

Compilers

• Grammar

$$E \rightarrow E + E \mid E * E \mid (E) \mid id$$

• String

$$id * id + id$$

This string has two parse trees

- A grammar is ambiguous if it has more than one parse tree for some string
 - Equivalently, there is more than one right-most or left-most derivation for some string

- Ambiguity is BAD
 - Leaves meaning of some programs ill-defined

Which of the following grammars are ambiguous?

$$\square$$
 S \rightarrow SS | a | b

$$\square$$
 E \rightarrow E + E | id

$$\square$$
 S \rightarrow Sa | Sb

$$\square E \rightarrow E' \mid E' + E$$

$$E' \rightarrow -E' \mid id \mid (E)$$

- There are several ways to handle ambiguity
- Most direct method is to rewrite grammar unambiguously

$$E \rightarrow E' + E \mid E'$$

 $E' \rightarrow id * E' \mid id \mid (E) * E' \mid (E)$

Enforces precedence of * over +

Consider the grammar

```
E → if E then E
| if E then E else E
| OTHER
```

The expression

has two parse trees

else matches the closest unmatched then

```
/* all then are matched */
\mathsf{E} \to \mathsf{MIF}
                        /* some then is unmatched */
     UIF
 MIF \rightarrow if E then MIF else MIF
          OTHER
 UIF \rightarrow if E then E
       if E then MIF else UIF
```

• The expression if E₁ then if E₂ then E₃ else E₄

Choose the unambiguous version of the given ambiguous grammar: $S \rightarrow SS \mid a \mid b$

O S
$$\rightarrow$$
 Sa | Sb | ϵ O S' \rightarrow a |

$$\circ$$
 S \rightarrow Sa | Sb

Impossible to convert automatically an ambiguous grammar to an unambiguous one

- Used with care, ambiguity can simplify the grammar
 - Sometimes allows more natural definitions
 - We need disambiguation mechanisms

- Instead of rewriting the grammar
 - Use the more natural (ambiguous) grammar
 - Along with disambiguating declarations

 Most tools allow precedence and associativity declarations to disambiguate grammars

- Consider the grammar $E \rightarrow E + E \mid int$
- Ambiguous: two parse trees of int + int + int

• Left associativity declaration: %left +

- Consider the grammar $E \rightarrow E + E \mid E * E \mid int$
 - And the string int + int * int

- Precedence declarations: %left +
 - %left *