
Alex Aiken

Compilers

Error Handling

Alex Aiken

Error Handling

• Purpose of the compiler is
– To detect non-valid programs
– To translate the valid ones

• Many kinds of possible errors (e.g. in C)

 Error kind Example Detected by …

Lexical … $ … Lexer

Syntax … x *% … Parser

Semantic … int x; y = x(3); … Type checker

Correctness your favorite program Tester/User

Alex Aiken

Error Handling

• Error handler should

– Report errors accurately and clearly

– Recover from an error quickly

– Not slow down compilation of valid code

Alex Aiken

Error Handling

• Panic mode

• Error productions

• Automatic local or global correction

Alex Aiken

Error Handling

• Panic mode is simplest, most popular method

• When an error is detected:

– Discard tokens until one with a clear role is found

– Continue from there

• Looking for synchronizing tokens

– Typically the statement or expression terminators

Alex Aiken

Error Handling

• Consider the erroneous expression

 (1 + + 2) + 3

• Panic-mode recovery:

– Skip ahead to next integer and then continue

• Bison: use the special terminal error to describe how
much input to skip

 E int | E + E | (E) | error int | (error)

Alex Aiken

Error Handling

• Error productions

– specify known common mistakes in the grammar

• Example:
– Write 5 x instead of 5 * x

– Add the production E … | E E

• Disadvantage
– Complicates the grammar

Alex Aiken

Error Handling

• Idea: find a correct “nearby” program

– Try token insertions and deletions

– Exhaustive search

• Disadvantages:

– Hard to implement

– Slows down parsing of correct programs

– “Nearby” is not necessarily “the intended” program

Alex Aiken

Error Handling

• Past

– Slow recompilation cycle (even once a day)

– Find as many errors in one cycle as possible

• Present

– Quick recompilation cycle

– Users tend to correct one error/cycle

– Complex error recovery is less compelling

