Compilers

Left Recursion

Alex Aiken

Left Recursion

Consider a productionS — S a
bool S,() { return S() && term(a); }
bool S() { return S,(); }

S() goes into an infinite loop

A left-recursive grammar has a non-terminal S
S —>"Sa for some o
Recursive descent does not work in such cases

Alex Aiken

Left Recursion

* Consider the left-recursive grammar
S—>Sal|f

* S generates all strings starting with a [3 and followed by
any number of as

* Can rewrite using right-recursion
S—>BY
S—>aS|e&

Alex Aiken

Left Recursion

* In general
S—Soy|..|Sa,|Byl.|B,

* All strings derived from S start with one of 3,,...,3,,
and continue with several instances of a,...,a,

e Rewrite as
S—>B,S|..1B,Y
S —>o,S|...]a,5]|¢

Alex Aiken

Left Recursion

* The grammar
S—>Aao| o
A—>Sp
is also left-recursive because

S—>*SPa

 This left-recursion can also be eliminated

e See Dragon Book for general algorithm

Alex Aiken

Left Recursion
Choose the grammar that correctly

eliminates left recursion from the given grammar: E - E+T | T

T — id | (E)
E > TE
O E > E+id | E+(E) OF— +TF | ¢
| id | (E) T = id | (E)
E—> E+T|T
O F > id | (E) QE—)id+E|E+T|T

T — id | (E) T —id | (E)

Left Recursion

* Recursive descent
— Simple and general parsing strategy
— Left-recursion must be eliminated first
— ... but that can be done automatically

e Used in production compilers
— E.g., gcc

Alex Aiken

