
Alex Aiken

Compilers

Left Recursion

Alex Aiken

Left Recursion

• Consider a production S  S a
 bool S1() { return S() && term(a); }

 bool S() { return S1(); }

• S() goes into an infinite loop

• A left-recursive grammar has a non-terminal S

 S + S for some 

• Recursive descent does not work in such cases

Alex Aiken

Left Recursion

• Consider the left-recursive grammar
 S  S  | 

• S generates all strings starting with a  and followed by
any number of ’s

• Can rewrite using right-recursion
 S   S’

 S’   S’ | 

Alex Aiken

Left Recursion

• In general

 S  S 1 | … | S n | 1 | … | m

• All strings derived from S start with one of 1,…,m
and continue with several instances of 1,…,n

• Rewrite as

 S  1 S’ | … | m S’

 S’  1 S’ | … | n S’ | 

Alex Aiken

Left Recursion

• The grammar

 S  A  | 

 A  S 

 is also left-recursive because

 S + S  

• This left-recursion can also be eliminated

• See Dragon Book for general algorithm

Template
block2x2-1

Ordering of
buttons is:
13
24

Left Recursion
Choose the grammar that correctly
eliminates left recursion from the given grammar:

E  E + id | E + (E)

 | id | (E)

E  id + E | E + T | T

T  id | (E)

E  E’ + T | T

E’  id | (E)

T  id | (E)

E  TE’

E’  + TE’ | 

T  id | (E)

E  E + T | T

T  id | (E)

Alex Aiken

Left Recursion

• Recursive descent

– Simple and general parsing strategy

– Left-recursion must be eliminated first

– … but that can be done automatically

• Used in production compilers

– E.g., gcc

