

Compilers

First Sets

First Sets

- Consider non-terminal A, production A $\rightarrow \alpha$, & token t
- $T[A,t] = \alpha$ in two cases:
- If $\alpha \rightarrow^* t \beta$
 - $-\alpha$ can derive a t in the first position
 - We say that $t \in First(\alpha)$
- If $A \to \alpha$ and $\alpha \to^* \varepsilon$ and $S \to^* \beta A t \delta$
 - Useful if stack has A, input is t, and A cannot derive t
 - In this case only option is to get rid of A (by deriving ε)
 - Can work only if t can follow A in at least one derivation
 - We say t ∈ Follow(A)

First Sets

Definition

$$First(X) = \{ t \mid X \rightarrow^* t\alpha \} \cup \{ \epsilon \mid X \rightarrow^* \epsilon \}$$

Algorithm sketch:

- 1. First(t) = $\{t\}$
- 2. $\varepsilon \in First(X)$
 - if $X \rightarrow \varepsilon$
 - if $X \to A_1 \dots A_n$ and $\varepsilon \in First(A_i)$ for $1 \le i \le n$
- 3. First(α) \subseteq First(X) if X \rightarrow A₁ ... A_n α
 - and ε ∈ First(A_i) for 1 ≤ i ≤ n

First Sets

Recall the grammar

$$E \rightarrow T X$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \varepsilon$