
Alex Aiken

Compilers

Handles

Alex Aiken

Handles

Bottom-up parsing uses two actions:

Shift

ABC|xyz ABCx|yz

Reduce

Cbxy|ijk CbA|ijk

Alex Aiken

Handles

• Left string can be implemented by a stack
– Top of the stack is the |

• Shift pushes a terminal on the stack

• Reduce

– pops 0 or more symbols off of the stack
• production rhs

– pushes a non-terminal on the stack
• production lhs

Alex Aiken

Handles

• How do we decide when to shift or reduce?

• Example grammar:
E T + E | T
T int * T | int | (E)

• Consider step int | * int + int

– We could reduce by T int giving T | * int + int
– A fatal mistake!

• No way to reduce to the start symbol E

Alex Aiken

Handles

• Intuition: Want to reduce only if the result can still be
reduced to the start symbol

• Assume a rightmost derivation

S * X

• Then is a handle of

Alex Aiken

Handles

• Handles formalize the intuition

– A handle is a reduction that also allows further
reductions back to the start symbol

• We only want to reduce at handles

• Note: We have said what a handle is, not how to find
handles

Template
vertLeft1

Handles

E E’ | E’ + E

E’ -E’ | id | (E)

Given the grammar at right, identify the
handle for the following shift-reduce parse

state: E’ + -id|+ -(id + id)

E’ + -id

id

-id

E’ + -E’

Alex Aiken

Handles

Important Fact #2 about bottom-up parsing:

In shift-reduce parsing, handles appear only at the top
of the stack, never inside

Alex Aiken

Handles

• Informal induction on # of reduce moves:

• True initially, stack is empty

• Immediately after reducing a handle
– right-most non-terminal on top of the stack
– next handle must be to right of right-most non-

terminal, because this is a right-most derivation
– Sequence of shift moves reaches next handle

Alex Aiken

Handles

• In shift-reduce parsing, handles always appear at the top
of the stack

• Handles are never to the left of the rightmost non-
terminal
– Therefore, shift-reduce moves are sufficient; the |

need never move left

• Bottom-up parsing algorithms are based on recognizing
handles

