
Alex Aiken

Compilers

Recognizing Handles

Alex Aiken

Recognizing Handles

• Bad News

– There are no known efficient algorithms to
recognize handles

• Good News

– There are good heuristics for guessing handles

– On some CFGs, the heuristics always guess
correctly

Alex Aiken

Recognizing Handles

 All CFGs

 Unambiguous CFGs

LR(k) CFGs

LALR(k) CFGs

SLR(k) CFGs

Alex Aiken

Recognizing Handles

• It is not obvious how to detect handles

• At each step the parser sees only the stack, not the
entire input; start with that . . .

a is a viable prefix if there is an w such that a|w is a
state of a shift-reduce parser

Alex Aiken

Recognizing Handles

• What does this mean? A few things:

– A viable prefix does not extend past the right end
of the handle

– It’s a viable prefix because it is a prefix of the
handle

– As long as a parser has viable prefixes on the stack
no parsing error has been detected

Alex Aiken

Recognizing Handles

Important Fact #3 about bottom-up parsing:

For any grammar, the set of viable prefixes is a regular
language

Alex Aiken

Recognizing Handles

• Important Fact #3 is non-obvious

• We show how to compute automata that accept
viable prefixes

Alex Aiken

Recognizing Handles

• An item is a production with a “.” somewhere on the
rhs

• The items for T  (E) are

T  .(E)

T  (.E)

T  (E.)

T  (E).

Alex Aiken

Recognizing Handles

• The only item for X  e is X  .

• Items are often called “LR(0) items”

Alex Aiken

Recognizing Handles

• The problem in recognizing viable prefixes is that the
stack has only bits and pieces of the rhs of
productions

– If it had a complete rhs, we could reduce

• These bits and pieces are always prefixes of rhs of
productions

Alex Aiken

Recognizing Handles

Consider the input (int)
E  T + E | T
T  int * T | int | (E)

– Then (E|) is a state of a shift-reduce parse

– (E is a prefix of the rhs of T  (E)

• Will be reduced after the next shift

– Item T  (E.) says that so far we have seen (E of this
production and hope to see)

Alex Aiken

Recognizing Handles

• The stack may have many prefixes of rhs’s
Prefix1 Prefix2 . . . Prefixn-1Prefixn

• Let Prefixi be a prefix of rhs of Xi  ai

– Prefixi will eventually reduce to Xi

– The missing part of ai-1 starts with Xi

– i.e. there is a Xi-1 Prefixi-1 Xi b for some b

• Recursively, Prefixk+1…Prefixn eventually reduces to the
missing part of ak

Alex Aiken

Recognizing Handles

Consider the string (int * int):
 (int *|int) is a state of a shift-reduce parse

 “(” is a prefix of the rhs of T  (E)
 “e” is a prefix of the rhs of E  T
 “int *” is a prefix of the rhs of T  int * T

Alex Aiken

Recognizing Handles

The “stack of items”

 T  (.E)

 E  .T

 T  int * .T

Says

 We’ve seen “(” of T  (E)

 We’ve seen e of E  T

 We’ve seen int * of T  int * T

Alex Aiken

Recognizing Handles

Idea: To recognize viable prefixes, we must

– Recognize a sequence of partial rhs’s of
productions, where

– Each partial rhs can eventually reduce to part of
the missing suffix of its predecessor

