

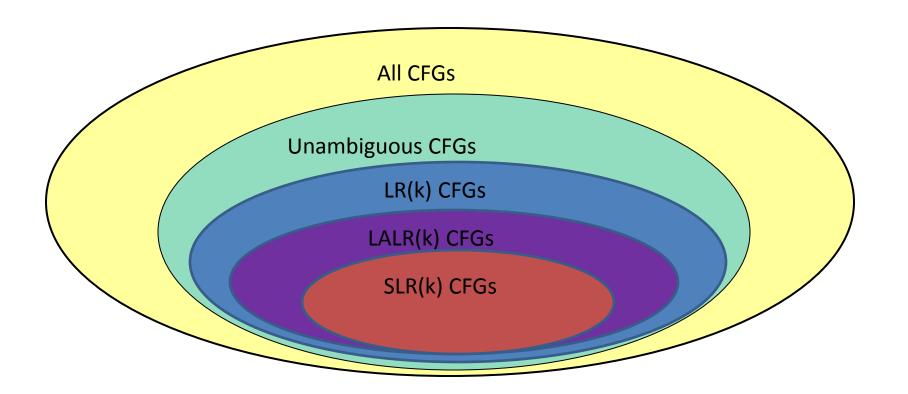
Compilers

Bad News

There are no known efficient algorithms to recognize handles

Good News

- There are good heuristics for guessing handles
- On some CFGs, the heuristics always guess correctly



It is not obvious how to detect handles

• At each step the parser sees only the stack, not the entire input; start with that . . .

 α is a viable prefix if there is an ω such that $\alpha \mid \omega$ is a state of a shift-reduce parser

What does this mean? A few things:

- A viable prefix does not extend past the right end of the handle
- It's a viable prefix because it is a prefix of the handle
- As long as a parser has viable prefixes on the stack no parsing error has been detected

Important Fact #3 about bottom-up parsing:

For any grammar, the set of viable prefixes is a regular language

• Important Fact #3 is non-obvious

 We show how to compute automata that accept viable prefixes

 An item is a production with a "." somewhere on the rhs

• The items for $T \rightarrow (E)$ are

$$T \rightarrow .(E)$$

$$T \rightarrow (.E)$$

$$T \rightarrow (E.)$$

$$T \rightarrow (E)$$
.

• The only item for $X \to \varepsilon$ is $X \to .$

Items are often called "LR(0) items"

- The problem in recognizing viable prefixes is that the stack has only bits and pieces of the rhs of productions
 - If it had a complete rhs, we could reduce

These bits and pieces are always prefixes of rhs of productions

Consider the input (int)

```
E \rightarrow T + E \mid T

T \rightarrow int * T \mid int \mid (E)
```

- Then (E|) is a state of a shift-reduce parse
- (E is a prefix of the rhs of $T \rightarrow (E)$
 - Will be reduced after the next shift
- Item T → (E.) says that so far we have seen (E of this production and hope to see)

- The stack may have many prefixes of rhs's
 Prefix₁ Prefix₂ . . . Prefix_{n-1}Prefix_n
- Let Prefix_i be a prefix of rhs of $X_i \rightarrow \alpha_i$
 - Prefix_i will eventually reduce to X_i
 - The missing part of α_{i-1} starts with X_i
 - i.e. there is a $X_{i-1} \rightarrow Prefix_{i-1} X_i \beta$ for some β
- Recursively, $\text{Prefix}_{k+1}...\text{Prefix}_n$ eventually reduces to the missing part of α_k

```
Consider the string (int * int):
  (int * | int) is a state of a shift-reduce parse

"(" is a prefix of the rhs of T → (E)

"ε" is a prefix of the rhs of E → T

"int *" is a prefix of the rhs of T → int * T
```

```
The "stack of items"
         T \rightarrow (.E)
         E \rightarrow .T
         T \rightarrow int * .T
Says
   We've seen "(" of T \rightarrow (E)
   We've seen \varepsilon of E \rightarrow T
   We've seen int * of T \rightarrow int * T
```

Idea: To recognize viable prefixes, we must

 Recognize a sequence of partial rhs's of productions, where

 Each partial rhs can eventually reduce to part of the missing suffix of its predecessor