Compilers

SLR Parsing

Alex Aiken

SLR Parsing

e LR(O) Parsing: Assume
— stack contains o
— next inputist
— DFA on input o terminates in state s
* Reduce by X — (3 if
— s contains item X — [3.
e Shiftif
— s contains item X — [.tw
— equivalent to saying s has a transition labeled t

Alex Aiken

SLR Parsing

e LR(0) has a reduce/reduce conflict if:

— Any state has two reduce items:
—X—pB.and Y — o.

* LR(0) has a shift/reduce conflict if:
— Any state has a reduce item and a shift item:
—X—B.andY — m.to

Alex Aiken

ET+ E (arsing

€T E—->.T+E

T .(B) (

S—>E. E-T.

EV ET.+E =

| Toint.*T 28
5.k MM T - int. =T
ES. T int &* E—>.T+E
E—> T+E Toint*.T T

T (E) T (E) To>.int*T
To.int*T To.int*T T — (E). T
=l T%'im&/‘

SLR Parsing

* SLR = “Simple LR”

* SLR improves on LR(0) shift/reduce heuristics
— Fewer states have conflicts

Alex Aiken

SLR Parsing

* |dea: Assume
— stack contains o
— next inputist
— DFA on input o terminates in state s

* Reduce by X — [if
— s contains item X — [3.
— t € Follow(X)

* Shift if
— s contains item X — B.tw

Alex Aiken

SLR Parsing

* If there are conflicts under these rules, the grammar
Is not SLR

* The rules amount to a heuristic for detecting handles

— The SLR grammars are those where the heuristics
detect exactly the handles

Alex Aiken

ET+ E (arsing

€T E—->.T+E

T .(B) (

S—>E. E-T.

EV ET.+E =

| Toint.*T 28
5.k MM T - int. =T
ES. T int &* E—>.T+E
E—> T+E Toint*.T T

T (E) T (E) To>.int*T
To.int*T To.int*T T — (E). T
=l T%'im&/‘

SLR Parsing

* Lots of grammars aren’t SLR

— including all ambiguous grammars

 We can parse more grammars by using precedence
declarations

— Instructions for resolving conflicts

Alex Aiken

SLR Parsing

* Consider our favorite ambiguous grammar:
—E—>E+E|E*E | (E) | int

* The DFA for this grammar contains a state with the
following items:
—E—>E*E. E>E.+E
— shift/reduce conflict!

e Declaring “* has higher precedence than +” resolves
this conflict in favor of reducing

Alex Aiken

SLR Parsing

* The term “precedence declaration” is misleading

* These declarations do not define precedence; they
define conflict resolutions

— Not quite the same thing!

Alex Aiken

SLR Parsing

1. Let M be DFA for viable prefixes of G
2. Let [x,..x,$S be initial configuration
3. Repeat until configuration is S|S
e Leta|w be current configuration
e Run M on current stack o

e |f M rejects o, report parsing error
e Stack o is not a viable prefix
e |f M accepts o with items |, let a be next input
 ShiftifX—>p.ayel
* Reduceif X— [3. € land a € Follow(X)
* Report parsing error if neither applies

Alex Aiken

SLR Parsing

* If there is a conflict in the last step, grammar is not
SLR(k)

e kisthe amount of lookahead
— In practice k=1

Alex Aiken

