
Alex Aiken

Compilers

Scope

Alex Aiken

Scope

• Matching identifier declarations with uses

– Important static analysis step in most languages

– Including COOL!

Alex Aiken

Scope

• Example 1

let y: String “abc” in y + 3

• Example 2

let y: Int in x + 3

Alex Aiken

Scope

• The scope of an identifier is the portion of a program
in which that identifier is accessible

• The same identifier may refer to different things in
different parts of the program

– Different scopes for same name don’t overlap

• An identifier may have restricted scope

Alex Aiken

Scope

• Most languages have static scope
– Scope depends only on the program text, not run-time

behavior
– Cool has static scope

• A few languages are dynamically scoped

– Lisp, SNOBOL
– Lisp has changed to mostly static scoping
– Scope depends on execution of the program

Alex Aiken

Scope

let x: Int <- 0 in

 {

 x;

 let x: Int <- 1 in

 x;

 x;

 }

Alex Aiken

Scope

• A dynamically-scoped variable refers to the closest
enclosing binding in the execution of the program

• Example

g(y) = let a 4 in f(3);

f(x) = a;

• More about dynamic scope later . . .

Alex Aiken

Scope

• Cool identifier bindings are introduced by

– Class declarations (introduce class names)

– Method definitions (introduce method names)

– Let expressions (introduce object id’s)

– Formal parameters (introduce object id’s)

– Attribute definitions (introduce object id’s)

– Case expressions (introduce object id’s)

Alex Aiken

Scope

• Not all identifiers follow the most-closely nested rule

• For example, class definitions in Cool

– Cannot be nested

– Are globally visible throughout the program

• A class name can be used before it is defined

Alex Aiken

Scope

Class Foo {

 . . . let y: Bar in . . .

};

Class Bar {

 . . .

};

Alex Aiken

Scope

Attribute names are global within the class in which
they are defined

Class Foo {

 f(): Int { a };

 a: Int 0;

}

Alex Aiken

Scope

• Method names have complex rules

• A method need not be defined in the class in which it
is used, but in some parent class

• Methods may also be redefined (overridden)

Template
vertLeft1

Scope

1 Class Foo {
2 f(x: Int): Int {
3 {
4 let x: Int <- 4 in {
6 x;
7 let x: Int <- 7 in
8 x;
9 x;
10 };
11 x;
12 };
13 };
14 x: Int <- 14;
15 }

Choose whether or not each variable use
binds to the name on the given line

Line 6 binds to line 2

Line 9 binds to line 7

Line 11 binds to line 14

Line 11 binds to line 2

