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Scope
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Scope

* Matching identifier declarations with uses

— Important static analysis step in most languages
— Including COOL!
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Scope

* Example 1
let y: String < “abc” iny + 3

 Example 2
lety: Intinx+3
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Scope

The scope of an identifier is the portion of a program
in which that identifier is accessible

The same identifier may refer to different things in
different parts of the program

— Different scopes for same name don’t overlap

An identifier may have restricted scope
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Scope
 Most languages have static scope

— Scope depends only on the program text, not run-time
behavior

— Cool has static scope

* A few languages are dynamically scoped
— Lisp, SNOBOL
— Lisp has changed to mostly static scoping
— Scope depends on execution of the program
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let x: Int<-0in
{
X,
let x: Int<-1in

X,

Scope
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Scope

* A dynamically-scoped variable refers to the closest
enclosing binding in the execution of the program

 Example

g(y) =leta <« 4inf(3);
f(x) = a;

* More about dynamic scope later. ..
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Scope

e Cool identifier bindings are introduced by

— Class declarations (introduce class names)

— Method definitions (introduce method names)
— Let expressions (introduce object id’s)

— Formal parameters (introduce object id’s)

— Attribute definitions (introduce object id’s)

— Case expressions (introduce object id’s)
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Scope

* Not all identifiers follow the most-closely nested rule

* For example, class definitions in Cool
— Cannot be nested
— Are globally visible throughout the program

e A class name can be used before it is defined
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Class Foo {

...lety:Barin...

5

Class Bar {

Scope
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Scope

Attribute names are global within the class in which
they are defined

Class Foo {
f(): Int{a};
a: Int <« 0O;
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Scope

 Method names have complex rules

A method need not be defined in the class in which it
is used, but in some parent class

 Methods may also be redefined (overridden)
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Choose whether or not each variable use Scope

binds to the name on the given line

1  Class Foo {
2 f(x: Int): Int {
3 {
. . ) 4 let x: Int <-4 in {
[1 Line 6 binds to line 2 6 X:
7 let x: Int <- 7 in
[1 Line 9 binds to line 7 S L
: ) i 10 I
(1 Line 11 binds to line 2 11 X:
12 ;
[] Line 11 binds to line 14 13 %

14 X: Int <- 14;
15 }



