Compilers

Scope

Alex Aiken

Scope

* Matching identifier declarations with uses

— Important static analysis step in most languages
— Including COOL!

Alex Aiken

Scope

* Example 1
let y: String < “abc” iny + 3

 Example 2
lety: Intinx+3

Alex Aiken

Scope

The scope of an identifier is the portion of a program
in which that identifier is accessible

The same identifier may refer to different things in
different parts of the program

— Different scopes for same name don’t overlap

An identifier may have restricted scope

Alex Aiken

Scope
 Most languages have static scope

— Scope depends only on the program text, not run-time
behavior

— Cool has static scope

* A few languages are dynamically scoped
— Lisp, SNOBOL
— Lisp has changed to mostly static scoping
— Scope depends on execution of the program

Alex Aiken

let x: Int<-0in
{
X,
let x: Int<-1in

X,

Scope

Alex Aiken

Scope

* A dynamically-scoped variable refers to the closest
enclosing binding in the execution of the program

 Example

g(y) =leta <« 4inf(3);
f(x) = a;

* More about dynamic scope later. ..

Alex Aiken

Scope

e Cool identifier bindings are introduced by

— Class declarations (introduce class names)

— Method definitions (introduce method names)
— Let expressions (introduce object id’s)

— Formal parameters (introduce object id’s)

— Attribute definitions (introduce object id’s)

— Case expressions (introduce object id’s)

Alex Aiken

Scope

* Not all identifiers follow the most-closely nested rule

* For example, class definitions in Cool
— Cannot be nested
— Are globally visible throughout the program

e A class name can be used before it is defined

Alex Aiken

Class Foo {

...lety:Barin...

5

Class Bar {

Scope

Alex Aiken

Scope

Attribute names are global within the class in which
they are defined

Class Foo {
f(): Int{a};
a: Int <« 0O;

Alex Aiken

Scope

 Method names have complex rules

A method need not be defined in the class in which it
is used, but in some parent class

 Methods may also be redefined (overridden)

Alex Aiken

Choose whether or not each variable use Scope

binds to the name on the given line

1 Class Foo {
2 f(x: Int): Int {
3 {
. .) 4 let x: Int <-4 in {
[1 Line 6 binds to line 2 6 X:
7 let x: Int <- 7 in
[1 Line 9 binds to line 7 S L
:) i 10 I
(1 Line 11 binds to line 2 11 X:
12 ;
[] Line 11 binds to line 14 13 %

14 X: Int <- 14;
15 }

