
Alex Aiken

Compilers

Symbol Tables

Alex Aiken

Symbol Tables

• Much of semantic analysis can be expressed as a
recursive descent of an AST

– Before: Process an AST node n

– Recurse: Process the children of n

– After: Finish processing the AST node n

• When performing semantic analysis on a portion of the
the AST, we need to know which identifiers are defined

Alex Aiken

Symbol Tables

• Example: the scope of let bindings is one subtree of
the AST:

let x: Int  0 in e

• x is defined in subtree e

Alex Aiken

Symbol Tables

• Recall: let x: Int  0 in e
• Idea:

– Before processing e, add definition of x to current
definitions, overriding any other definition of x

– Recurse
– After processing e, remove definition of x and restore

old definition of x

• A symbol table is a data structure that tracks the current
bindings of identifiers

Alex Aiken

Symbol Tables

• For a simple symbol table we can use a stack

• Operations

– add_symbol(x) push x and associated info, such as
x’s type, on the stack

– find_symbol(x) search stack, starting from top, for
x. Return first x found or NULL if none found

– remove_symbol() pop the stack

Alex Aiken

Symbol Tables

• The simple symbol table works for let

– Symbols added one at a time

– Declarations are perfectly nested

Alex Aiken

Symbol Tables

• enter_scope() start a new nested scope

• find_symbol(x) finds current x (or null)

• add_symbol(x) add a symbol x to the table

• check_scope(x) true if x defined in current scope

• exit_scope() exit current scope

A symbol table manager is supplied with the project.

Alex Aiken

Symbol Tables

• Class names can be used before being defined

• We can’t check class names
– using a symbol table
– or even in one pass

• Solution
– Pass 1: Gather all class names
– Pass 2: Do the checking

• Semantic analysis requires multiple passes
– Probably more than two

