
Alex Aiken

Compilers

Type Checking

Alex Aiken

Type Checking

• We have seen two examples of formal notation
specifying parts of a compiler

– Regular expressions

– Context-free grammars

• The appropriate formalism for type checking is
logical rules of inference

Alex Aiken

Type Checking

• Inference rules have the form
If Hypothesis is true, then Conclusion is true

• Type checking computes via reasoning

If E1 and E2 have certain types, then E3 has a certain
type

• Rules of inference are a compact notation for “If-

Then” statements

Alex Aiken

Type Checking

• The notation is easy to read with practice

• Start with a simplified system and gradually add features

• Building blocks

– Symbol is “and”

– Symbol is “if-then”

– x:T is “x has type T”

Alex Aiken

Type Checking

If e1 has type Int and e2 has type Int, then e1 + e2
has type Int

(e1 has type Int e2 has type Int) e1 + e2 has
type Int

(e1: Int e2: Int) e1 + e2: Int

Alex Aiken

Type Checking

The statement

(e1: Int e2: Int) e1 + e2: Int

is a special case of

Hypothesis1 . . . Hypothesisn Conclusion

This is an inference rule

Alex Aiken

Type Checking

• By tradition inference rules are written

 ` Hypothesis … ` Hypothesis

` Conclusion

• Cool type rules have hypotheses and conclusions

 ` e:T

• ` means “it is provable that . . .”

Alex Aiken

Type Checking

i is an integer literal

` i : Int

` e1: Int ` e2: Int

` e1 + e2 : Int

[Int]

[Add]

Alex Aiken

Type Checking

• These rules give templates describing how to type
integers and + expressions

• By filling in the templates, we can produce complete
typings for expressions

Alex Aiken

Type Checking

1 is an int literal 2 is an int literal

` 1 : Int ` 2: Int

` 1 + 2 : Int

Alex Aiken

Type Checking

• A type system is sound if

– Whenever ` e: T

– Then e evaluates to a value of type T

• We only want sound rules

– But some sound rules are better than others!

Template
vertLeft1

Type Checking

` e1: Int ` e2: Int
` e1 < e2 : Int

` e1: T1
` isvoid e1 : Bool

` e1: Int ` e2: Int
` e1 / e2 : Bool

` e1: T1

` e2: T2
⋮

` en: Tn
` {e1; e2; … en; } : Tn

Choose the type rules that are sound

[Sequence]

[Divide]

[Compare]

[Isvoid]

Alex Aiken

Type Checking

• Type checking proves facts e: T
– Proof is on the structure of the AST
– Proof has the shape of the AST
– One type rule is used for each AST node

• In the type rule used for a node e:

– Hypotheses are the proofs of types of e’s subexpressions
– Conclusion is the type of e

• Types are computed in a bottom-up pass over the AST

