

Compilers

- We have seen two examples of formal notation specifying parts of a compiler
 - Regular expressions
 - Context-free grammars

 The appropriate formalism for type checking is logical rules of inference

• Inference rules have the form

If Hypothesis is true, then Conclusion is true

• Type checking computes via reasoning

If E_1 and E_2 have certain types, then E_3 has a certain type

 Rules of inference are a compact notation for "If-Then" statements

The notation is easy to read with practice

Start with a simplified system and gradually add features

- Building blocks
 - Symbol ∧ is "and"
 - Symbol ⇒ is "if-then"
 - x:T is "x has type T"

then
$$e_1 + e_2$$

(
$$e_1$$
 has type Int $\land e_2$ has type Int) \Rightarrow type Int

$$e_1 + e_2$$
 has

$$(e_1: Int \land e_2: Int) \Rightarrow e_1 + e_2: Int$$

The statement

$$(e_1: Int \land e_2: Int) \Rightarrow e_1 + e_2: Int$$

is a special case of

 $\mathsf{Hypothesis}_1 \land \ldots \land \mathsf{Hypothesis}_n \Rightarrow \mathsf{Conclusion}$

This is an inference rule

By tradition inference rules are written

⊢ Conclusion

Cool type rules have hypotheses and conclusions

means "it is provable that . . ."

$$\frac{\vdash e_1: Int \vdash e_2: Int}{\vdash e_1 + e_2: Int}$$
 [Add]

 These rules give templates describing how to type integers and + expressions

 By filling in the templates, we can produce complete typings for expressions

1 is an int literal 2 is an int literal
$$\vdash$$
 1 : Int \vdash 2 : Int \vdash 1 + 2 : Int

- A type system is sound if
 - Whenever ⊢ e: T
 - Then e evaluates to a value of type T

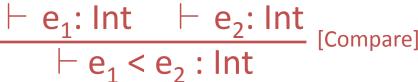
- We only want sound rules
 - But some sound rules are better than others!

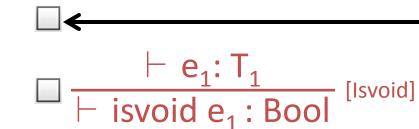
Choose the type rules that are sound

Type Checking \vdash e₁: T₁

$$\vdash e_1: I_1$$

 $\vdash e_2: T_2$


$$\vdash e_n: T_n$$
 $\vdash \{e_1; e_2; ... e_n; \}: T_n$



[Sequence]

- Type checking proves facts e: T
 - Proof is on the structure of the AST
 - Proof has the shape of the AST
 - One type rule is used for each AST node
- In the type rule used for a node e:
 - Hypotheses are the proofs of types of e's subexpressions
 - Conclusion is the type of e
- Types are computed in a bottom-up pass over the AST