Compilers

Type Checking

Alex Aiken

Type Checking

* We have seen two examples of formal notation
specifying parts of a compiler

— Regular expressions

— Context-free grammars

* The appropriate formalism for type checking is
logical rules of inference

Alex Aiken

Type Checking
* |nference rules have the form

If Hypothesis is true, then Conclusion is true

* Type checking computes via reasoning

If E; and E, have certain types, then E, has a certain
type

* Rules of inference are a compact notation for “If-
Then” statements

Alex Aiken

Type Checking

* The notation is easy to read with practice

e Start with a simplified system and gradually add features

* Building blocks
— Symbol A is “and”
— Symbol = is “if-then”
— x:Tis “x has type T”

Alex Aiken

Type Checking

If e, has type Int and e, has type Int, thene, +e,
has type Int

(e, has type Int A e, has type Int) = e, +e, has
type Int

(e;:Int AeyiiInt) = e, +e,:Int

Alex Aiken

Type Checking

The statement
(e;:Int AeyiInt) = e, +e,iInt
is a special case of
Hypothesis; A ... A Hypothesis, = Conclusion

This is an inference rule

Alex Aiken

Type Checking

e By tradition inference rules are written

— Hypothesis ... = Hypothesis

~ Conclusion

* Cool type rules have hypotheses and conclusions
—e:T
e | means “itis provable that../”

Alex Aiken

Type Checking

| is an integer literal

—i:Int [int]

—e;Int e, int (Add)

—e;+e,:Int

Alex Aiken

Type Checking

* These rules give templates describing how to type
integers and + expressions

e By filling in the templates, we can produce complete
typings for expressions

Alex Aiken

Type Checking

1is anintliteral 2is an int literal

= 1:Int ~ 2:Int
~ 1+4+2:Int

Alex Aiken

Type Checking

e Atype system is sound if
— Whenever - e: T
— Then e evaluates to a value of type T

 We only want sound rules

— But some sound rules are better than others!

Alex Aiken

Choose the type rules that are sound | 'YP€ Checking

— e T,
—. e, T,

[Sequence]

— eI,
~ {e; ey ..e; b T,
[Divide]
~e;rInt | oe,int
—e,<e,:Int

€
~e;rint e, int
- e, /e, :Bool

[

[e

[Compare]

~e; T,
~ isvoid e, : Bool

[Isvoid]

Type Checking

* Type checking proves factse: T
— Proof is on the structure of the AST
— Proof has the shape of the AST
— One type rule is used for each AST node

* Inthe type rule used for a node e:
— Hypotheses are the proofs of types of e’s subexpressions

— Conclusion is the type of e

* Types are computed in a bottom-up pass over the AST

Alex Aiken

