
Alex Aiken

Compilers

Type Environments

Alex Aiken

Type Environments

` false : Bool

s is a string literal

` s: String

[False]

[String]

Alex Aiken

Type Environments

new T produces an object of type T

– Ignore SELF_TYPE for now . . .

` new T : T

[New]

Alex Aiken

Type Environments

` e: Bool

` !e : Bool

` e1: Bool

` e2:T

` while e1 loop e2 pool:Object

[Not]

[Loop]

Alex Aiken

Type Environments

• What is the type of a variable reference?

x is a variable

` x: ?

• The local, structural rule does not carry enough
information to give x a type.

[Var]

Alex Aiken

Type Environments

• Put more information in the rules!

• A type environment gives types for free variables

– A type environment is a function from
ObjectIdentifiers to Types

– A variable is free in an expression if it is not
defined within the expression

Alex Aiken

Type Environments

Let O be a function from ObjectIdentifiers to Types

The sentence O ` e: T

is read: Under the assumption that variables have the
types given by O, it is provable that the expression e
has the type T

Alex Aiken

Type Environments

The type environment is added to the earlier rules:

i is an integer literal

O ` i : Int

O ` e1: Int O ` e2: Int

O ` e1 + e2 : Int

[Int]

[Add]

Alex Aiken

Type Environments

And we can write new rules:

O(x) = T

` x: T

[Var]

Alex Aiken

Type Environments

O[T0/x] ` e1: T1

O ` let x:T0 in e1 : T1

[Let-No-Init]

Template
vertLeft2

Type Environments

O1 ` e1: T1

O2 ` e2: T2

O ` let x: T1 <- e1 in e2 : T2

[Let-Init]

Fill in the correct type environments in
the following type rule

O1 = O[T1/x]; O2 = O[T1/x]

O1 = O[T1/x]; O2 = O[T2/x]

O1 = O; O2 = O[T1/x]

O1 = O; O2 = O[T2/x]

Alex Aiken

Type Environments

• The type environment gives types to the free
identifiers in the current scope

• The type environment is passed down the AST from
the root towards the leaves

• Types are computed up the AST from the leaves
towards the root

