Compilers

Type Environments

Alex Aiken



Type Environments

~ false : Bool [False]

S is a string literal (String]

- s: String

Alex Aiken



Type Environments

new T produces an object of type T
— lgnore SELF_TYPE for now . ..

[New]
—newT:T

Alex Aiken



Type Environments

— e: Bool
— le : Bool [Not]
~ e,: Bool

= e, T [Loop]

~ while e, loop e, pool:Object

Alex Aiken



Type Environments

 What is the type of a variable reference?

X is a variable
= x:?

[Var]

* The local, structural rule does not carry enough
information to give x a type.

Alex Aiken



Type Environments

e Put more information in the rules!

* A type environment gives types for free variables

— A type environment is a function from
Objectldentifiers to Types

— A variable is free in an expression if it is not
defined within the expression

Alex Aiken



Type Environments

Let O be a function from Objectidentifiers to Types

The sentence OF e: T

is read: Under the assumption that variables have the
types given by O, it is provable that the expression e
has the type T

Alex Aiken



Type Environments

The type environment is added to the earlier rules:

| is an integer literal [Int]
OF i:lInt

OF e;:lnt OF e,:Int
OF e;+e,:Int

[Add]

Alex Aiken



Type Environments

And we can write new rules:

O(x)=T
= x: T

[Var]

Alex Aiken



Type Environments

O[TO/X] - e;: T [Let-No-Init]

OF letx:Tyine,: T,

Alex Aiken



Fill in the correct type environments in
the following type rule

O,Fe;:T,
O, e,T,

OF letx:T;<-e;ine,: T,

O,=0I[T,/x]; O,=O[T,/x]
0,=0[T,/x]; 0, = O[T,/x]
0,=0; 0,=0[T,/x]
0,=0; 0, = O[T,/x]

O O O O

Type Environments

[Let-Init]



Type Environments

* The type environment gives types to the free
identifiers in the current scope

* The type environment is passed down the AST from
the root towards the leaves

* Types are computed up the AST from the leaves
towards the root

Alex Aiken



