
Alex Aiken 

Compilers 

Static vs. Dynamic Typing 



Alex Aiken 

Static vs. Dynamic 

• Static type systems detect common errors 

 

• But some correct programs are disallowed 

– Some argue for dynamic type checking instead 

– Others want more expressive static type checking 
 

• But more expressive type systems are more complex 



Alex Aiken 

Static vs. Dynamic 

• The dynamic type of an object is the class C that is 
used in the “new C” expression that created it 
– A run-time notion 
– Even languages that are not statically typed have 

the notion of dynamic type 
 

• The static type of an expression captures all dynamic 
types the expression could have 
– A compile-time notion 



Alex Aiken 

Static vs. Dynamic 

 

• Soundness theorem: for all expressions E 

            dynamic_type(E) = static_type(E) 

 

In all executions, E evaluates to values of the type 
inferred by the compiler. 

 



Alex Aiken 

Static vs. Dynamic 

 

class A { … } 
class B inherits A {…} 
class Main { 
   x:A  new A; 
   … 
   x  new B; 
   … 
}  

 



Template 
vertLeft2 

Static vs. Dynamic 
 

1  class Animal { … } 
2  class Pet inherits Animal { … } 
3  class Cat inherits Pet { … } 
4  class Dog inherits Pet { … } 
5  class Lion inherits Animal { … } 
6  class Main { 
7   w:Animal <- new Animal; 
8   x:Animal <- new Pet; 
9   y:Animal <- new Pet; 
10  z:Pet <- new Pet; 
11  w <- new Lion; 
12  y <- new Dog; 
13  z <- new Cat; 
14  … 
15 }  

Choose the static/dynamic type 
pairs that are correct. For 
dynamic type, assume execution 
has halted at line 14. 

     

      Var  Static Type  Dynamic Type 

      w   Animal    Lion 
 

    x   Animal    Pet 
 

    y   Pet     Dog 
 

    z   Pet     Pet 



Alex Aiken 

Static vs. Dynamic 

Soundness theorem for the Cool type system: 

       " E.   dynamic_type(E)    static_type(E)  
 

 

– All operations that can be used on an object of type C can 
also be used on an object of type C’  C 
• Such as fetching the value of an attribute 

• Or invoking a method on the object 

– Subclasses only add attributes or methods 

– Methods can be redefined but with same type! 


