

Compilers

Self Type Operations

- What can be the dynamic type of the object returned by inc?
 - Answer: whatever could be the type of "self"

```
class A inherits Count { };
class B inherits Count { };
class C inherits Count { };
(inc could be invoked through any of these classes)
```

 In general, if SELF_TYPE appears textually in the class C as the declared type of E then

- Note: The meaning of SELF_TYPE depends on where it appears
 - SELF_TYPE_C to refers to an occurrence of SELF_TYPE in the body of C
- This suggests a typing rule:

$$SELF_TYPE_C \le C \qquad (*)$$

- Rule (*) has an important consequence:
 - In type checking it is always safe to replace
 SELF_TYPE_C by C

- This suggests one way to handle SELF_TYPE:
 - Replace all occurrences of SELF_TYPE_C by C

- Recall the operations on types
 - $-T_1 \le T_2$ T_1 is a subtype of T_2
 - $\text{lub}(T_1,T_2)$ the least-upper bound of T_1 and T_2

Extend these operations to handle SELF_TYPE

Let T and T' be any types but SELF_TYPE

- 1. $SELF_TYPE_C \le SELF_TYPE_C$
 - In Cool we never compare SELF_TYPEs coming from different classes
- 2. SELF_TYPE_C \leq T if C \leq T
 - SELF_TYPE_C can be any subtype of C
 - This includes C itself
 - Thus this is the most flexible rule we can allow

3. $T \leq SELF_TYPE_C$ always false

Note: SELF_TYPE_C can denote any subtype of C.

4. $T \le T'$ (according to the rules from before)

Choose the subtype relations that are true for the class definitions given at right

- Square ≤ SELF_TYPE_{Shape}
- □ SELF_TYPE_{Circle} ≤ Quad
- □ SELF_TYPE_{Shape} ≤ Shape
- \Box SELF_TYPE_{Rect} ≤ Shape

Self Type Operations

Class Object
Class Bool inherits Object
Class Point inherits Object
Class Line inherits Object
Class Shape inherits Object
Class Quad inherits Shape
Class Circle inherits Shape
Class Rect inherits Quad
Class Square inherits Rect

Let T and T' be any types but SELF_TYPE

- 1. lub(SELF_TYPE_c, SELF_TYPE_c) = SELF_TYPE_c
- 2. $lub(SELF_TYPE_C, T) = lub(C, T)$ This is the best we can do because $SELF_TYPE_C \le C$
- 3. $lub(T, SELF_TYPE_C) = lub(C, T)$
- 4. lub(T, T') defined as before