
Alex Aiken

Compilers

Error Recovery

Alex Aiken

Error Recovery

• As with parsing, it is important to recover from type errors

• Detecting where errors occur is easier than in parsing
– There is no reason to skip over portions of code

• The problem:
– What type is assigned to an expression with no legitimate type?

– This type will influence the typing of the enclosing expression

Alex Aiken

Error Recovery

• Assign type Object to ill-typed expressions

let y : Int x + 2 in y + 3

 a workable solution but with cascading errors

Alex Aiken

Error Recovery

• Introduce a new type No_type for use with ill-typed
expressions

• Define No_type  C for all types C

• Every operation is defined for No_type
– With a No_type result

let y : Int x + 2 in y + 3

Error Recovery

if true then x else 1 fi

Bool

Int

No_type

No_type

if true then x else 1 fi

Bool

Int

No_type

Int

if true then x else 1 fi

Bool

Int

Object

Object

Choose the correct labeling of types for the
code fragment, using No_type as described in
the video. Assume that x is not defined.

if true then x else 1 fi

Bool

Int

Object

No_type

Alex Aiken

Error Recovery

• A “real” compiler would use something like No_type

• However, there are some implementation issues

– The class hierarchy is not a tree anymore

• The Object solution is fine in the course project

