
Alex Aiken 

Compilers 

Globals & Heap 



Alex Aiken 

Globals & Heap 

• All references to a global variable point to the same 
object 

– Can’t store a global in an activation record 

 

• Globals are assigned a fixed address once 

– Variables with fixed address are “statically allocated” 

• Depending on the language, there may be other statically 
allocated values 



Alex Aiken 

Globals & Heap 

Low Address 

High Address 

Memory 

Code 

Stack 

Static Data 



Alex Aiken 

Globals & Heap 

• A value that outlives the procedure that creates it 
cannot be kept in the AR 

method foo() { new Bar } 

The Bar value must survive deallocation of foo’s AR 

 

• Languages with dynamically allocated data use a 
heap to store dynamic data 



Alex Aiken 

Globals & Heap 

• The code area contains object code 
– For most languages, fixed size and read only 

• The static area contains data (not code) with fixed 
addresses (e.g., global data) 
– Fixed size, may be readable or writable 

• The stack contains an AR for each currently active 
procedure 
– Each AR usually fixed size, contains locals 

• Heap contains all other data 
– In C, heap is managed by malloc and free 



Alex Aiken 

Globals & Heap 

• Both the heap and the stack grow 

 

• Must take care that they don’t grow into each other 

 

• Solution: start heap and stack at opposite ends of 
memory and let them grow towards each other 



Alex Aiken 

Globals & Heap 

Low Address 

High Address 

Memory 

Code 

Stack 

Static Data 

Heap 


