
Alex Aiken

Compilers

Stack Machines

Alex Aiken

Stack Machines

• Only storage is a stack

• An instruction r = F(a1,…an):

– Pops n operands from the stack

– Computes the operation F using the operands

– Pushes the result r on the stack

Alex Aiken

Stack Machines

Alex Aiken

Stack Machines

• Consider two instructions

– push i - push integer i on the stack

– add - add two integers

– A program:

 push 7

 push 5

 add

Alex Aiken

Stack Machines

• Stack machines are a very simple machine model

– Leads to a simple, small compiler

– But not necessarily one that produces very fast
code

Alex Aiken

Stack Machines

• Location of the operands/result is not explicitly stated

– Always the top of the stack

• In contrast to a register machine

– add instead of add r1, r2, r3

– More compact programs

• One reason that Java bytecode uses stack evaluation

Alex Aiken

Stack Machines

• There is an intermediate point between a pure stack
machine and a pure register machine

• An n-register stack machine

– Conceptually, keep the top n locations of the pure
stack machine’s stack in registers

• Consider a 1-register stack machine

– The register is called the accumulator

Alex Aiken

Stack Machines

• In a pure stack machine

– An add does 3 memory operations

– Two reads and one write to the stack

• In a 1-register stack machine the add does

 acc  acc + top_of_stack

Alex Aiken

Stack Machines

• Consider an expression op(e1,…,en)
– Note e1,…,en are subexpressions

• For each ei (0 < i < n)

– Compute ei
– Push result on the stack

• Pop n-1 values from the stack, compute op

• Store result in the accumulator

Alex Aiken

Stack Machines

Alex Aiken

Stack Machines

After evaluating an expression e, the accumulator holds
the value of e and the stack is unchanged.

Expression evaluation preserves the stack.

Alex Aiken

Stack Machines

 Code Acc Stack

acc  3 3 <init>

push acc 3 3, <init>

acc  7 7 3, <init>

push acc 7 7, 3, <init>

acc  5 5 7, 3, <init>

acc  acc + top_of_stack 12 7, 3, <init>

pop 12 3, <init>

acc  acc + top_of_stack 15 3, <init>

pop 15 <init>

Template
block2x2-1

Ordering of
buttons is:
13
24

Stack Machines Given the current state of the stack and
accumulator, what is the next line of
code to generate for the code fragment
(2 * 3) + 5?

push acc

acc 6

pop

Current:
Acc : 5
Stack: 6,<init>

acc acc + top_of_stack

