
Alex Aiken

Compilers

Introduction to Code
Generation

Alex Aiken

Code Generation

• We focus on generating code for a stack machine
with accumulator

• We want to run the resulting code on a real machine

– e.g., the MIPS processor (or simulator)

• We simulate stack machine instructions using MIPS
instructions and registers

Alex Aiken

Code Generation

• The accumulator is kept in MIPS register $a0

• The stack is kept in memory
– The stack grows towards lower addresses
– Standard convention on MIPS

• The address of the next location on the stack is kept in
MIPS register $sp
– The top of the stack is at address $sp + 4

Alex Aiken

Code Generation

MIPS architecture
– Prototypical Reduced Instruction Set Computer (RISC)

– Most operations use registers for operands & results

– Use load & store instructions to use values in memory

– 32 general purpose registers (32 bits each)

• We use $sp, $a0 and $t1 (a temporary register)

• Read the SPIM documentation for details

Alex Aiken

Code Generation

– lw reg1 offset(reg2)
• Load 32-bit word from address reg2 + offset into reg1

– add reg1 reg2 reg3
• reg1  reg2 + reg3

– sw reg1 offset(reg2)
• Store 32-bit word in reg1 at address reg2 + offset

– addiu reg1 reg2 imm
• reg1  reg2 + imm
• “u” means overflow is not checked

– li reg imm
• reg  imm

Alex Aiken

Code Generation

The stack-machine code for 7 + 5 in MIPS:

acc  7

push acc

acc  5

acc  acc + top_of_stack

pop

li $a0 7

sw $a0 0($sp)

addiu $sp $sp -4

li $a0 5

lw $t1 4($sp)

add $a0 $a0 $t1

addiu $sp $sp 4

