
Alex Aiken

Compilers

Code Generation II

Alex Aiken

Code Generation II

A language with integers and integer operations

 P  D; P | D

 D  def id(ARGS) = E;
 ARGS  id, ARGS | id

 E  int | id | if E1 = E2 then E3 else E4

 | E1 + E2 | E1 – E2 | id(E1,…,En)

Alex Aiken

Code Generation II

• Code for function calls and function definitions depends
on the layout of the AR

• A very simple AR suffices for this language:

– The result is always in the accumulator
• No need to store the result in the AR

– The activation record holds actual parameters
• For f(x1,…,xn) push xn,…,x1 on the stack

• These are the only variables in this language

Alex Aiken

Code Generation II

• The stack discipline guarantees that on function exit
$sp is the same as it was on function entry

– No need for a control link

• We need the return address

• A pointer to the current activation is useful

– This pointer lives in register $fp (frame pointer)

Alex Aiken

Code Generation II

• Summary: For this language, an AR with the caller’s frame
pointer, the actual parameters, and the return address suffices

• Picture: Consider a call to f(x,y), the AR is:

y

x

old fp

SP

FP

AR of f

Alex Aiken

Code Generation II

• The calling sequence is the instructions (of both
caller and callee) to set up a function invocation

• New instruction: jal label

– Jump to label, save address of next instruction in
$ra

– On other architectures the return address is
stored on the stack by the “call” instruction

Alex Aiken

Code Generation II

cgen(f(e1,…,en)) =
 sw $fp 0($sp)
 addiu $sp $sp -4
 cgen(en)
 sw $a0 0($sp)
 addiu $sp $sp -4
 …
 cgen(e1)
 sw $a0 0($sp)
 addiu $sp $sp -4
 jal f_entry

• The caller saves its value of the frame
pointer

• Then it saves the actual parameters in
reverse order

• Finally the caller saves the return
address in register $ra

• The AR so far is 4*n+4 bytes long

Alex Aiken

Code Generation II

• New instruction: jr reg
– Jump to address in register reg

cgen(def f(x1,…,xn) = e) =

 move $fp $sp

 sw $ra 0($sp)

 addiu $sp $sp -4

 cgen(e)

 lw $ra 4($sp)

 addiu $sp $sp z

 lw $fp 0($sp)

 jr $ra

• Note: The frame pointer points to the
top, not bottom of the frame

• The callee pops the return address, the
actual arguments and the saved value of
the frame pointer

• z = 4*n + 8

Alex Aiken

Code Generation II

 Before call On entry Before exit After call

SP

FP

y

x

old fp

SP

FP

SP

FP

SP

return

y

x

old fp

FP

Alex Aiken

Code Generation II

• Variable references are the last construct

• The “variables” of a function are just its parameters

– They are all in the AR

– Pushed by the caller

• Problem: Because the stack grows when intermediate
results are saved, the variables are not at a fixed offset
from $sp

Alex Aiken

Code Generation II

• Solution: use a frame pointer

– Always points to the return address on the stack

– Since it does not move it can be used to find the
variables

• Let xi be the ith (i = 1,…,n) formal parameter of the
function for which code is being generated

 cgen(xi) = lw $a0 z($fp) (z = 4*i)

Alex Aiken

Code Generation II

• Example: For a function def f(x,y) = e the activation
and frame pointer are set up as follows:

y

x

return

old fp

• X is at fp + 4

• Y is at fp + 8
FP

SP

Template
vertLeft1

Code Generation II For the function definitions at right, which of the
following appear in the activation record on a call
to f()?

def f(x,y,z) =
 if x
 then g(y)
 else g(z)

def g(t) =
 t + 1

x

t

g

z

Alex Aiken

Code Generation II

• The activation record must be designed together
with the code generator

• Code generation can be done by recursive traversal
of the AST

• We recommend you use a stack machine for your
Cool compiler (it’s simple)

Alex Aiken

Code Generation II

• Production compilers do different things

– Emphasis is on keeping values in registers

• Especially the current stack frame

– Intermediate results are laid out in the AR, not
pushed and popped from the stack

