
Alex Aiken

Compilers

Object Layout

Alex Aiken

Object Layout

• OO implementation = Basic code generation + More stuff

• OO Slogan: If B is a subclass of A, than an object of class
B can be used wherever an object of class A is expected

• This means that code in class A works unmodified for an
object of class B

Alex Aiken

Object Layout

• How are objects represented in memory?

• How is dynamic dispatch implemented?

Alex Aiken

Object Layout

Class A {
 a: Int <- 0;
 d: Int <- 1;
 f(): Int { a <- a + d };
};

Class B inherits A {
 b: Int <- 2;
 f(): Int { a };
 g(): Int { a <- a - b };
};

Class C inherits A {

 c: Int <- 3;

 h(): Int { a <- a * c };

};

Alex Aiken

Object Layout

Class A {
 a: Int <- 0;
 d: Int <- 1;
 f(): Int { a <- a + d };
};

Class B inherits A {
 b: Int <- 2;
 f(): Int { a };
 g(): Int { a <- a - b };
};

Class C inherits A {

 c: Int <- 3;

 h(): Int { a <- a * c };

};

Attributes a and d are inherited by
classes B and C

Alex Aiken

Object Layout

Class A {
 a: Int <- 0;
 d: Int <- 1;
 f(): Int { a <- a + d };
};

Class B inherits A {
 b: Int <- 2;
 f(): Int { a };
 g(): Int { a <- a - b };
};

Class C inherits A {

 c: Int <- 3;

 h(): Int { a <- a * c };

};

All methods in all classes refer to a

Alex Aiken

Object Layout

Class A {
 a: Int <- 0;
 d: Int <- 1;
 f(): Int { a <- a + d };
};

Class B inherits A {
 b: Int <- 2;
 f(): Int { a };
 g(): Int { a <- a - b };
};

Class C inherits A {

 c: Int <- 3;

 h(): Int { a <- a * c };

};

For A methods to work correctly in A,
B, and C objects, attribute a must
be in the same “place” in each
object

Alex Aiken

Object Layout

• Objects are laid out in contiguous memory

• Each attribute stored at a fixed offset in the object

– The attribute is in the same place in every object
of that class

• When a method is invoked, the object is self and the
fields are the object’s attributes

Alex Aiken

Object Layout

• The first 3 words of Cool objects contain header
information:

Dispatch Ptr

Attribute 1

Attribute 2

. . .

Class Tag

Object Size

Offset

0

4

8

12

16

Alex Aiken

Object Layout

• Class tag is an integer
– Identifies class of the object

• Object size is an integer
– Size of the object in words

• Dispatch ptr is a pointer to a table of methods
– More later

• Attributes in subsequent slots

• Lay out in contiguous memory

Alex Aiken

Object Layout

Observation: Given a layout for class A, a layout for
subclass B can be defined by extending the layout of A
with additional slots for the additional attributes of B

Leaves the layout of A unchanged

(B is an extension)

Alex Aiken

Object Layout

 Offset

Class

0 4 8 12 16 20

A Atag 5 * a d

B Btag 6 * a d b

C Ctag 6 * a d c

Alex Aiken

Object Layout

• The offset for an attribute is the same in a class and all of
its subclasses

– Any method for an A1 can be used on a subclass A2

• Consider layout for An < … < A3 < A2 < A1

A2 attrs

A3 attrs

. . .

Header

A1 attrs.

A1 object

A2 object

A3 object

Template
vertLeft1

Object Layout For the given classes and object
layout table, what are the
correct inheritance
relationships between classes?

Dispatch Ptr

x

y

Class Tag

Object Size

v

. . .

z

u

Class A inherits ??? {
 u: Int <- 0;
 v: Int <- 1;
};

Class B inherits ??? {
 x: Int <- 3;
 y: Int <- 4;
};

Class C inherits ??? {
 z: Int <- 5;
};

A < B < C

C < B < A

A < C < B

B < C < A

Alex Aiken

Object Layout

Class A {
 a: Int <- 0;
 d: Int <- 1;
 f(): Int { a <- a + d };
};

Class B inherits A {
 b: Int <- 2;
 f(): Int { a };
 g(): Int { a <- a - b };
};

Class C inherits A {

 c: Int <- 3;

 h(): Int { a <- a * c };

};

Consider the dispatch

 e.g()

Alex Aiken

Object Layout

Class A {
 a: Int <- 0;
 d: Int <- 1;
 f(): Int { a <- a + d };
};

Class B inherits A {
 b: Int <- 2;
 f(): Int { a };
 g(): Int { a <- a - b };
};

Class C inherits A {

 c: Int <- 3;

 h(): Int { a <- a * c };

};

Consider the dispatch

 e.f ()

Alex Aiken

Object Layout

• Every class has a fixed set of methods

– including inherited methods

• A dispatch table indexes these methods

– An array of method entry points

– A method f lives at a fixed offset in the dispatch
table for a class and all of its subclasses

Alex Aiken

Object Layout

• The dispatch table for class A
has only 1 method

• The tables for B and C extend
the table for A to the right

• Because methods can be
overridden, the method for f is
not the same in every class,
but is always at the same
offset

 Offset

Class

0 4

A fA

B fB g

C fA h

Alex Aiken

Object Layout

• The dispatch pointer in an object of class X points to
the dispatch table for class X

• Every method f of class X is assigned an offset Of in
the dispatch table at compile time

Alex Aiken

Object Layout

• To implement a dynamic dispatch e.f() we

– Evaluate e, giving an object x

– Call D[Of]

• D is the dispatch table for x

• In the call, self is bound to x

