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Object Layout 

• OO implementation = Basic code generation + More stuff 

 

• OO Slogan: If B is a subclass of A, than an object of class 
B can be used wherever an object of class A is expected 

 

• This means that code in class A works unmodified for an 
object of class B 
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Object Layout 

• How are objects represented in memory? 

 

• How is dynamic dispatch implemented? 
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Object Layout 

Class A { 
 a: Int <- 0; 
 d: Int <- 1; 
 f(): Int { a <- a + d }; 
}; 
 
Class  B inherits A { 
 b: Int <- 2; 
 f(): Int { a }; 
 g(): Int { a <- a - b }; 
}; 

Class  C inherits A { 

 c: Int <- 3; 

 h(): Int { a <- a * c }; 

}; 
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Object Layout 

Class A { 
 a: Int <- 0; 
 d: Int <- 1; 
 f(): Int { a <- a + d }; 
}; 
 
Class  B inherits A { 
 b: Int <- 2; 
 f(): Int { a }; 
 g(): Int { a <- a - b }; 
}; 

Class  C inherits A { 

 c: Int <- 3; 

 h(): Int { a <- a * c }; 

}; 

 

 

Attributes a and d are inherited by 
classes B and C 
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Object Layout 

Class A { 
 a: Int <- 0; 
 d: Int <- 1; 
 f(): Int { a <- a + d }; 
}; 
 
Class  B inherits A { 
 b: Int <- 2; 
 f(): Int { a }; 
 g(): Int { a <- a - b }; 
}; 

Class  C inherits A { 

 c: Int <- 3; 

 h(): Int { a <- a * c }; 

}; 

 

 

All methods in all classes refer to a 
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Object Layout 

Class A { 
 a: Int <- 0; 
 d: Int <- 1; 
 f(): Int { a <- a + d }; 
}; 
 
Class  B inherits A { 
 b: Int <- 2; 
 f(): Int { a }; 
 g(): Int { a <- a - b }; 
}; 

Class  C inherits A { 

 c: Int <- 3; 

 h(): Int { a <- a * c }; 

}; 

 

For A methods to work correctly in A, 
B, and C objects, attribute a must 
be in the same “place” in each 
object 

 

 

 



Alex Aiken 

Object Layout 

• Objects are laid out in contiguous memory 

 

• Each attribute stored at a fixed offset in the object 

– The attribute is in the same place in every object 
of that class 

 

• When a method is invoked, the object is self and the 
fields are the object’s attributes 
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Object Layout 

• The first 3 words of Cool objects contain header 
information: 

 

Dispatch Ptr 

Attribute 1 

Attribute 2 

. . . 

Class Tag 

Object Size 

Offset 

0 

4 

8 

12 

16 
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Object Layout 

• Class tag is an integer 
– Identifies class of the object 

• Object size is an integer 
– Size of the object in words 

• Dispatch ptr is a pointer to a table of methods 
– More later 

• Attributes in subsequent slots 
 

• Lay out in contiguous memory 
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Object Layout 

Observation: Given a layout for class A, a layout for 
subclass B can be defined by extending the layout of A 
with additional slots for the additional attributes of B 

 

Leaves the layout of A unchanged  

(B is an extension) 
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Object Layout 

          Offset  

Class 

0 4 8 12 16 20 

A Atag 5 * a d 

B Btag 6 * a d b 

C Ctag 6 * a d c 
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Object Layout 

• The offset for an attribute is the same in a class and all of 
its subclasses 

– Any method for an A1 can be used on a subclass A2 

• Consider layout for An < … < A3 < A2 < A1 

 

A2 attrs 

A3 attrs 

. . . 

Header 

A1 attrs. 

A1 object 

A2 object 

A3 object 
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vertLeft1 

Object Layout For the given classes and object 
layout table, what are the 
correct inheritance 
relationships between classes? 

Dispatch Ptr 

x 

y 

Class Tag 

Object Size 

v 

. . . 

z 

u 

Class  A inherits ??? { 
 u: Int <- 0; 
 v: Int <- 1; 
}; 
 
Class  B inherits ??? { 
 x: Int <- 3; 
 y: Int <- 4; 
}; 
 
Class  C inherits ??? { 
 z: Int <- 5; 
}; 
 

A < B < C 

C < B < A 

A < C < B 

B < C < A 
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Object Layout 

Class A { 
 a: Int <- 0; 
 d: Int <- 1; 
 f(): Int { a <- a + d }; 
}; 
 
Class  B inherits A { 
 b: Int <- 2; 
 f(): Int { a }; 
 g(): Int { a <- a - b }; 
}; 

Class  C inherits A { 

 c: Int <- 3; 

 h(): Int { a <- a * c }; 

}; 

 

 

Consider the dispatch 

 e.g() 
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Object Layout 

Class A { 
 a: Int <- 0; 
 d: Int <- 1; 
 f(): Int { a <- a + d }; 
}; 
 
Class  B inherits A { 
 b: Int <- 2; 
 f(): Int { a }; 
 g(): Int { a <- a - b }; 
}; 

Class  C inherits A { 

 c: Int <- 3; 

 h(): Int { a <- a * c }; 

}; 

 

 

Consider the dispatch 

 e.f () 
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Object Layout 

• Every class has a fixed set of methods 

– including inherited methods 

 

• A dispatch table indexes these methods 

– An array of method entry points 

– A method f lives at a fixed offset in the dispatch 
table for a class and all of its subclasses 
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Object Layout 

• The dispatch table for class A 
has only 1 method 

• The tables for B and C extend 
the table for A to the right 

• Because methods can be 
overridden, the method for f is 
not the same in every class, 
but is always at the same 
offset 

          Offset  

Class 

0 4 

A fA 

B fB g 

C fA h 
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Object Layout 

• The dispatch pointer in an object of class X points to 
the dispatch table for class X 

 

• Every method f of class X is assigned an offset Of in 
the dispatch table at compile time 
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Object Layout 

• To implement a dynamic dispatch e.f() we 

– Evaluate e, giving an object x 

– Call D[Of] 

• D is the dispatch table for x 

• In the call, self is bound to x 

 


