Compilers

Object Layout

Alex Aiken

Object Layout

OO implementation = Basic code generation + More stuff

OO Slogan: If B is a subclass of A, than an object of class
B can be used wherever an object of class A is expected

This means that code in class A works unmodified for an
object of class B

Alex Aiken

Object Layout

* How are objects represented in memory?

 How is dynamic dispatch implemented?

Alex Aiken

Object Layout

Class A { Class Cinherits A {

. Int <- 0;
3. Il::c[<_2'. c:Int<-3;

f():Int{a<-a+d}; h(): Int{a<-a*c}
I |5

Class B inherits A {
b: Int <- 2;
f():Int{a};
g():Int{a<-a-b}
Iy

Alex Aiken

Object Layout

Class A { Class Cinherits A {
a: Int <- 0; o Int <. 3:
d: Int <- 1, :)
f():Int{a<-a+d}; h(): Int{a<-a*c}
I |5
Class B inherits A {
b: Int <- 2;
f(): Int{a}; Attributes a and d are inherited by
g(): Int{a<-a-b} classes B and C

I

Alex Aiken

Object Layout

Class A { Class Cinherits A {
a: Int <- O, c: Int <- 3
d: Int<-1; ' '
f): Int{a<-a+d} h():Int{a<-a*ch
I |5
Class B inherits A {
b: Int <- 2;
f(): Int{a}: All methods in all classes refer to a

g():Int{a<-a-b}
I

Alex Aiken

Object Layout

Class A { Class Cinherits A {
a: Int <- 0; o Int <. 3:
d: Int <- 1, :)
f():Int{a<-a+d}; h(): Int{a<-a*c}
I |5

Class B inherits A _
{ For A methods to work correctly in A,

b: Int <- 2; - :
f(): Int{a}: B, and C objects, attribute a must
g(): Int{a < a-bl be in the same “place” in each

}: object

Alex Aiken

Object Layout

* Objects are laid out in contiguous memory

e Each attribute stored at a fixed offset in the object

— The attribute is in the same place in every object
of that class

* When a method is invoked, the object is self and the
fields are the object’s attributes

Alex Aiken

Object Layout

* The first 3 words of Cool objects contain header
information:

Offset
Class Tag 0
Obiject Size
Dispatch Ptr 8
Attribute 1 12
Attribute 2 16

Alex Aiken

Object Layout

Class tag is an integer

— |dentifies class of the object

Object size is an integer

— Size of the object in words

Dispatch ptr is a pointer to a table of methods
— More later

Attributes in subsequent slots

Lay out in contiguous memory

Alex Aiken

Object Layout

Observation: Given a layout for class A, a layout for
subclass B can be defined by extending the layout of A
with additional slots for the additional attributes of B

Leaves the layout of A unchanged

(B is an extension)

Alex Aiken

Object Layout

Offset |0 12 16 20
Class
A Atag a d
B Btag a d b
C Ctag a d C

Alex Aiken

Object Layout

e The offset for an attribute is the same in a class and all of
its subclasses

— Any method for an A; can be used on a subclass A,
* Consider layout for A, <..<A; <A, <A,

Header A, object
A, attrs A, object
A; attrs

Alex Aiken

For the given classes and object Object Layout

layout table, what are the
correct inheritance Class A inherits 2?7 {

. . : -0 Class Tag
relationships between classes? u: Int <~ 0; ——
v:Int<-1; Object Size
O A<B<C b Dispatch Ptr
Class B inherits ??7? { X
O C<B<A x: Int <- 3; y
y: Int <-4; Z
O A<C<B Z u
Class Cinherits ??? { v
O B<C<A z: Int <- 5;

I

Object Layout

Class A { Class Cinherits A {
a: Int <- O, c: Int <- 3
d: Int<-1; ' ’
f):Int{a<-a+d}; h():Int{a<-a*ch
h; I
Class B inherits A {
b: Int <- 2;
f(): Int{a}: Consider the dispatch
g():Int{a<-a-b} e.g()

I

Alex Aiken

Object Layout

Class A { Class Cinherits A {
a: Int<-0; ¢ Int <- 3-
d: Int<-1; ' ’
f): Int {a<-a+d}; h():Intia<-a®ch
h; J
Class B inherits A {
b: Int <- 2;
f(): Int{a}: Consider the dispatch
g():Int{a<-a-b}; e.f()

I

Alex Aiken

Object Layout

* Every class has a fixed set of methods

— including inherited methods

* Adispatch table indexes these methods
— An array of method entry points

— A method f lives at a fixed offset in the dispatch
table for a class and all of its subclasses

Alex Aiken

Offset |0
Class
A fA
B fB
C fA

Object Layout

The dispatch table for class A
has only 1 method

The tables for B and C extend
the table for A to the right

Because methods can be
overridden, the method for f is
not the same in every class,
but is always at the same
offset

Alex Aiken

Object Layout

* The dispatch pointer in an object of class X points to
the dispatch table for class X

* Every method f of class X is assigned an offset O; in
the dispatch table at compile time

Alex Aiken

Object Layout

 To implement a dynamic dispatch e.f() we

— Evaluate e, giving an object x

* D is the dispatch table for x
* In the call, self is bound to x

Alex Aiken

