
Alex Aiken

Compilers

Semantics Overview

Alex Aiken

Semantics Overview

• We must specify for every Cool expression what happens
when it is evaluated
– This is the “meaning” of an expression

• The definition of a programming language:
– The tokens  lexical analysis
– The grammar  syntactic analysis
– The typing rules  semantic analysis
– The evaluation rules

 code generation and optimization

Alex Aiken

Semantics Overview

• We have specified evaluation rules indirectly

– The compilation of Cool to a stack machine

– The evaluation rules of the stack machine

• This is a complete description

– Why isn’t it good enough?

Alex Aiken

Semantics Overview

• Assembly-language descriptions of language
implementation have irrelevant detail
– Whether to use a stack machine or not
– Which way the stack grows
– How integers are represented
– The particular instruction set of the architecture

• We need a complete description

– But not an overly restrictive specification

Alex Aiken

Semantics Overview

• Many ways to specify semantics
– All equally powerful
– Some more suitable to various tasks than others

• Operational semantics

– Describes program evaluation via execution rules
• on an abstract machine

– Most useful for specifying implementations
– This is what we use for Cool

Alex Aiken

Semantics Overview

• Denotational semantics
– Program’s meaning is a mathematical function

• Axiomatic semantics
– Program behavior described via logical formulae

• If execution begins in state satisfying X, then it ends in
state satisfying Y

• X, Y formulas

– Foundation of many program verification systems

