
Alex Aiken

Compilers

Operational Semantics

Alex Aiken

Operational Semantics

• Once again we introduce a formal notation

• Logical rules of inference, as in type checking

Alex Aiken

Operational Semantics

• Recall the typing judgment

 Context d e : C

 In the given context, expression e has type C

• We use something similar for evaluation

 Context d e : v

 In the given context, expression e evaluates to value v

Alex Aiken

Operational Semantics

Context d e1 : 5
Context d e2 : 7

Context d e1 + e2 : 12

Alex Aiken

Operational Semantics

• Consider the evaluation of y  x + 1

• We track variables and their values with:

– An environment : where in memory a variable is

– A store : what is in the memory

Alex Aiken

Operational Semantics

• A variable environment maps variables to locations

– Keeps track of which variables are in scope

– Tells us where those variables are

E = [a : l1, b : l2]

Alex Aiken

Operational Semantics

• A store maps memory locations to values

S = [l1  5, l2  7]

• S’ = S[12/l1] defines a store S’ such that

S’(l1) = 12 and S’(l) = S(l) if l  l1

Alex Aiken

Operational Semantics

• Cool values are objects

– All objects are instances of some class

• X(a1 = l1, …, an = ln) is a Cool object where

– X is the class of the object

– ai are the attributes (including inherited ones)

– li is the location where the value of ai is stored

Alex Aiken

Operational Semantics

• Special cases (classes without attributes)
Int(5) the integer 5
Bool(true) the boolean true
String(4, “Cool”) the string “Cool” of length 4

• There is a special value void of type Object
– No operations can be performed on it
– Except for the test isvoid
– Concrete implementations might use NULL here

Alex Aiken

Operational Semantics

• The evaluation judgment is
 so, E, S d e : v, S’

– Given so the current value of self
– And E the current variable environment
– And S the current store
– If the evaluation of e terminates then
– The value of e is v
– And the new store is S’

Alex Aiken

Operational Semantics

• “Result” of evaluation is a value and a store

– New store models the side-effects

• Some things don’t change

– The variable environment

– The value of self

– The operational semantics allows for non-
terminating evaluations

