Compilers

Cool Semantics |l

Alex Aiken

Cool Semantics Il
* Informal semantics of new T

— Allocate locations to hold all attributes of an
object of class T

* Essentially, allocate a new object
— Set attributes with their default values

— Evaluate the initializers and set the resulting
attribute values

— Return the newly allocated object

Alex Aiken

Cool Semantics Il

* For each class A there is a default value D,

— D, = Int(0)
— D, = Bool(false)
— Dyyying = String(0, *7)

— D, = void (for any other class A)

Alex Aiken

Cool Semantics Il

* For a class A we write

class(A)=(a;: T, < ey, ..., a,: T, < e,) where
— a. are the attributes (including the inherited ones)
— T, are the attributes’ declared types

— e, are the initializers

Alex Aiken

Cool Semantics Il

Ty = if (T == SELF_TYPE and so = X(...)) then X else T
class(Ty) = (@ : Ty <« €e4,..., 2, : T, < €e,)

. = newloc(S) fori=1,...,n

v =Ty(a;=ly,...,a,= 1)

S; = S[Dyi/ly,.., Dri/15]

E' =[a;: 1 ..,a,: 1]

V, E',S;-{a;«<ey ..;a,«<e,; r:Vv,S,

so,E,S+newT:v, S,

Alex Aiken

Cool Semantics Il

* The first three steps allocate the object

 The remaining steps initialize it
— By evaluating a sequence of assignments

e State in which the initializers are evaluated
— Self is the current object
— Only the attributes are in scope (same as in typing)
— Initial values of attributes are the defaults

Alex Aiken

Cool Semantics I
* Informal semantics of e.f(e,,...,.e,)

— Evaluate the arguments in order e, ...,e_

— Evaluate e, to the target object

— Let X be the dynamic type of the target object
— Fetch from X the definition of f (with n args.)

— Create n new locations and an environment that maps
f’s formal arguments to those locations

— Initialize the locations with the actual arguments
— Set self to the target object and evaluate f's body

Alex Aiken

Cool Semantics Il

* For aclass A and a method f of A (possibly inherited):

impl(A, f) = (xq, ..., X, €,04,) Where
— x; are the names of the formal arguments

— €p,4y IS the body of the method

Alex Aiken

Cool Semantics Il

so,E,S+e; vy, S5
so, E,SiFe, 1v,, S,

so, E,S..i+~e, :Vv,,S,

so, E, S, ey Vg Spii

Vo = X(a; = ly,..., 8, = 1)

impl(X, f) = (X,...; Xqns €pody)

., = newloc(S,,;) fori=1,...,n

E' =1[a;:ly,...,an L 1[X1/Lqs ooor X/ lin]
Sn+2 = Sn+1[V1/|x11"-IVn/|xn]

Vo s E / Sn+2 - ebody -V Sn+3

so, E, S+ ey.f(ey,...,€,) 1V, S, i3

Alex Aiken

What is the final value of S5 in the dispatch of obj.foo(i) below? COOl Sema ntiCS 1

so, [i:l], Sy 1 : 3,5, Class C{

so, [i:i], Sy ~obj : C(a =l 2), S3 a: Int <- 0;
impl(C, foo) = (x, x + a)

|, = newloc(S5;)

S, = S3[3/1]

C(a _ Inh1 a) [a Inh1 a][X/I]I S4 FX+ a 4/ S'%
so, [i:l], [Iob] <1, .<~3] + obj.foo(i) 4, Sc

foo(x: Int) : Int{x+a};

O [I<3]

O [l a¢1, 11«3]

O [lpj a1, 1«3, 1,&3]
O

It cannot be determined from the information given.

Cool Semantics Il

 The body of the method is invoked with
— E mapping formal arguments and self’s attributes

— S like the caller’s except with actual arguments bound
to the locations allocated for formals

 The notion of the frame is implicit
— New locations are allocated for actual arguments

 The semantics of static dispatch is similar

Alex Aiken

Runtime Errors

Operational rules do not cover all cases
Consider the dispatch example:

so, E, S, +ey :VyShii
Vo = X(a; = ly,..., a, = 1)
impl(X, f) = (Xq,..., Xis €pody)

Alex Aiken

Cool Semantics Il

* There are some runtime errors that the type checker
does not prevent

— A dispatch on void

— Division by zero

— Substring out of range
— Heap overflow

* In such cases execution must abort gracefully
— With an error message, not with a segfault

Alex Aiken

Cool Semantics Il

Operational rules are very precise & detailed
— Nothing is left unspecified
— Read them carefully

Most languages do not have a well specified operational
semantics

When portability is important an operational semantics
becomes essential

Alex Aiken

