Compilers

Intermediate Code

Alex Aiken



Intermediate Code

* Alanguage between the source and the target

 Provides an intermediate level of abstraction
— More details than the source
— Fewer details than the target

Alex Aiken



Intermediate Code

* Intermediate language = high-level assembly

— Uses register names, but has an unlimited number
— Uses control structures like assembly language
— Uses opcodes but some are higher level

e E.g., push translates to several assembly instructions
* Most opcodes correspond directly to assembly opcodes

Alex Aiken



Intermediate Code

e Each instruction is of the form
X:=yopz
X:=0pYy
— vy and z are registers or constants
— Common form of intermediate code

 The expression x +y * z is translated
. — X
t,=y*z
t, =x+t,
. 11 7
— Each subexpression has a name

Alex Aiken



Intermediate Code

* Similar to assembly code generation

* But use any number of IL registers to hold
intermediate results

Alex Aiken



Intermediate Code
e igen(e, t)

— code to compute the value of e in register t

e Example:
igen(e, +e,, t) =
igen(e,, t,) (t, is a fresh register)
igen(e,, t,) (t, is a fresh register)
t=t, +t,

* Unlimited number of registers => simple code generation

Alex Aiken



Intermediate Code

 You should be able to use intermediate code

— At the level discussed in lectures

* You are not expected to know how to generate
intermediate code

— Because we won’t discuss it further

— But really just a variation on code generation.. ..

Alex Aiken



