
Alex Aiken

Compilers

Intermediate Code

Alex Aiken

Intermediate Code

• A language between the source and the target

• Provides an intermediate level of abstraction

– More details than the source

– Fewer details than the target

Alex Aiken

Intermediate Code

• Intermediate language = high-level assembly

– Uses register names, but has an unlimited number

– Uses control structures like assembly language

– Uses opcodes but some are higher level

• E.g., push translates to several assembly instructions

• Most opcodes correspond directly to assembly opcodes

Alex Aiken

Intermediate Code

• Each instruction is of the form
 x := y op z
 x := op y

– y and z are registers or constants
– Common form of intermediate code

• The expression x + y * z is translated

 t1 := y * z
 t2 := x + t1

– Each subexpression has a “name”

Alex Aiken

Intermediate Code

• Similar to assembly code generation

• But use any number of IL registers to hold
intermediate results

Alex Aiken

Intermediate Code

• igen(e, t)
– code to compute the value of e in register t

• Example:

igen(e1 + e2, t) =
 igen(e1, t1) (t1 is a fresh register)
 igen(e2, t2) (t2 is a fresh register)
 t := t1 + t2

• Unlimited number of registers => simple code generation

Alex Aiken

Intermediate Code

• You should be able to use intermediate code

– At the level discussed in lectures

• You are not expected to know how to generate
intermediate code

– Because we won’t discuss it further

– But really just a variation on code generation . . .

