
Alex Aiken

Compilers

Optimization Overview

Alex Aiken

Optimization Overview

• Optimization is our last compiler phase

• Most complexity in modern compilers is in the
optimizer

– Also by far the largest phase

Alex Aiken

Optimization Overview

• When should we perform optimizations?
– On AST

• Pro: Machine independent
• Con: Too high level

– On assembly language
• Pro: Exposes optimization opportunities
• Con: Machine dependent
• Con: Must reimplement optimizations when retargetting

– On an intermediate language
• Pro: Machine independent
• Pro: Exposes optimization opportunities

Alex Aiken

Optimization Overview

P  S P | S
S  id := id op id
 | id := op id
 | id := id
 | push id
 | id := pop
 | if id relop id goto L
 | L:
 | jump L

• Id’s are register names

• Constants can replace id’s

• Typical operators: +, -, *

Alex Aiken

Optimization Overview

• A basic block is a maximal sequence of instructions with:
– no labels (except at the first instruction), and
– no jumps (except in the last instruction)

• Idea:

– Cannot jump into a basic block (except at beginning)
– Cannot jump out of a basic block (except at end)
– A basic block is a single-entry, single-exit, straight-line

code segment

Alex Aiken

Optimization Overview

• Consider the basic block
1. L:
2. t := 2 * x
3. w := t + x
4. if w > 0 goto L’

• (3) executes only after (2)

– We can change (3) to w := 3 * x
– Can we eliminate (2) as well?

Alex Aiken

Optimization Overview

• A control-flow graph is a directed graph with

– Basic blocks as nodes

– An edge from block A to block B if the execution
can pass from the last instruction in A to the first
instruction in B

• E.g., the last instruction in A is jump LB

• E.g., execution can fall-through from block A to block B

Alex Aiken

Optimization Overview

• The body of a method (or
procedure) can be represented
as a control-flow graph

• There is one initial node

• All “return” nodes are terminal

x := 1
i := 1

L:
 x := x * x
 i := i + 1
 if i < 10 goto L

Alex Aiken

Optimization Overview

• Optimization seeks to improve a program’s resource
utilization

– Execution time (most often)

– Code size

– Network messages sent, etc.

• Optimization should not alter what the program
computes

– The answer must still be the same

Alex Aiken

Optimization Overview

• For languages like C and Cool there are three
granularities of optimizations

1. Local optimizations
• Apply to a basic block in isolation

2. Global optimizations
• Apply to a control-flow graph (method body) in isolation

3. Inter-procedural optimizations
• Apply across method boundaries

• Most compilers do (1), many do (2), few do (3)

Alex Aiken

Optimization Overview

• In practice, often a conscious decision is made not to
implement the fanciest optimization known

• Why?
– Some optimizations are hard to implement
– Some optimizations are costly in compilation time
– Some optimizations have low payoff
– Many fancy optimizations are all three!

• Goal: Maximum benefit for minimum cost

