
Alex Aiken

Compilers

Local Optimization

Alex Aiken

Local Optimization

• The simplest form of optimization

• Optimize one basic block

• No need to analyze the whole procedure body

Alex Aiken

Local Optimization

• Some statements can be deleted

x := x + 0

x := x * 1

• Some statements can be simplified
 x := x * 0  x := 0

 y := y ** 2  y := y * y

 x := x * 8  x := x << 3

 x := x * 15  t := x << 4; x := t - x

(on some machines << is faster than *; but not on all!)

Alex Aiken

Local Optimization

• Operations on constants can be computed at compile
time

– If there is a statement x := y op z

– And y and z are constants

– Then y op z can be computed at compile time

• Example: x := 2 + 2  x := 4

• Example: if 2 < 0 jump L can be deleted

Alex Aiken

Local Optimization

• Constant folding can be dangerous.

Alex Aiken

Local Optimization

• Eliminate unreachable basic blocks:

– Code that is unreachable from the initial block
• E.g., basic blocks that are not the target of any jump or “fall

through” from a conditional

• Removing unreachable code makes the program smaller

– And sometimes also faster
• Due to memory cache effects

• Increased spatial locality

Alex Aiken

Local Optimization

• Why would unreachable basic blocks occur?

Alex Aiken

Local Optimization

• Some optimizations are simplified if each register occurs only
once on the left-hand side of an assignment

• Rewrite intermediate code in single assignment form
x := z + y b := z + y

a := x  a := b

x := 2 * x x := 2 * b

 (b is a fresh register)

– More complicated in general, due to loops

Alex Aiken

Local Optimization

• If
– Basic block is in single assignment form
– A definition x := is the first use of x in a block

• Then
– When two assignments have the same rhs, they compute

the same value
• Example:

x := y + z x := y + z
…  …
w := y + z w := x
(the values of x, y, and z do not change in the … code)

Alex Aiken

Local Optimization

• If w := x appears in a block, replace subsequent uses of w with
uses of x
– Assumes single assignment form

• Example:
 b := z + y b := z + y
 a := b  a := b
 x := 2 * a x := 2 * b

• Only useful for enabling other optimizations
– Constant folding
– Dead code elimination

Alex Aiken

Local Optimization

• Example:

a := 5 a := 5

x := 2 * a  x := 10

y := x + 6 y := 16

t := x * y t := x << 4

Alex Aiken

Local Optimization

If
w := rhs appears in a basic block
w does not appear anywhere else in the program

Then
the statement w := rhs is dead and can be eliminated
– Dead = does not contribute to the program’s result

Example: (a is not used anywhere else)
x := z + y b := z + y b := z + y
a := x  a := b  x := 2 * b
x := 2 * a x := 2 * b

Alex Aiken

Local Optimization

• Each local optimization does little by itself

• Typically optimizations interact

– Performing one optimization enables another

• Optimizing compilers repeat optimizations until no
improvement is possible

– The optimizer can also be stopped at any point to limit
compilation time

Alex Aiken

Local Optimization

• Initial code:
 a := x ** 2
 b := 3
 c := x
 d := c * c
 e := b * 2
 f := a + d
 g := e * f

Alex Aiken

Local Optimization

• Algebraic optimization:
 a := x ** 2
 b := 3
 c := x
 d := c * c
 e := b * 2
 f := a + d
 g := e * f

Alex Aiken

Local Optimization

• Algebraic optimization:
 a := x * x
 b := 3
 c := x
 d := c * c
 e := b << 1
 f := a + d
 g := e * f

Alex Aiken

Local Optimization

• Copy propagation:
 a := x * x
 b := 3
 c := x
 d := c * c
 e := b << 1
 f := a + d
 g := e * f

Alex Aiken

Local Optimization

• Copy propagation:
 a := x * x
 b := 3
 c := x
 d := x * x
 e := 3 << 1
 f := a + d
 g := e * f

Alex Aiken

Local Optimization

• Constant folding:
 a := x * x
 b := 3
 c := x
 d := x * x
 e := 3 << 1
 f := a + d
 g := e * f

Alex Aiken

Local Optimization

• Constant folding:
 a := x * x
 b := 3
 c := x
 d := x * x
 e := 6
 f := a + d
 g := e * f

Alex Aiken

Local Optimization

• Common subexpression elimination:
 a := x * x
 b := 3
 c := x
 d := x * x
 e := 6
 f := a + d
 g := e * f

Alex Aiken

Local Optimization

• Common subexpression elimination:
 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + d
 g := e * f

Alex Aiken

Local Optimization

• Copy propagation:
 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + d
 g := e * f

Alex Aiken

Local Optimization

• Copy propagation:
 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + a
 g := 6 * f

Alex Aiken

Local Optimization

• Dead code elimination:
 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + a
 g := 6 * f

Alex Aiken

Local Optimization

• Dead code elimination:
 a := x * x

 f := a + a
 g := 6 * f

• This is the final form

Template
vertLeft1

Local Optimization Which of the following are valid local optimizations
for the given basic block? Assume that only g and x
are referenced outside of this basic block.

Copy propagation: Line 4 becomes d := a * b.

Dead code elimination: Line 3 is removed.

Common subexpression elimination:
Line 5 becomes e := d.

After many rounds of valid optimizations, the
entire block can be reduced to g := 5.

1 a := 1
2 b := 3
3 c := a + x
4 d := a * 3
5 e := b * 3
6 f := a + b
7 g := e - f

