

Compilers

Peephole Optimization

Optimizations can be directly applied to assembly code

- <u>Peephole optimization</u> is effective for improving assembly code
 - The "peephole" is a short sequence of (usually contiguous) instructions
 - The optimizer replaces the sequence with another equivalent one (but faster)

Peephole Optimization

Write peephole optimizations as replacement rules

$$i_1, ..., i_n \rightarrow j_1, ..., j_m$$

where the rhs is the improved version of the lhs

Example:

move \$a \$b, move \$b \$a \rightarrow move \$a \$b

- Works if move \$b \$a is not the target of a jump
- Another example

addiu $a \$ a $a \$ a i, addiu $a \$ a j $\rightarrow a \$ addiu $a \$ a i+j

Peephole Optimization

- Many (but not all) of the basic block optimizations can be cast as peephole optimizations
 - Example: addiu $$a $b 0 \rightarrow move $a b
 - Example: move $$a $a \rightarrow$
 - These two together eliminate addiu \$a \$a 0

 As for local optimizations, peephole optimizations must be applied repeatedly for maximum effect

Peephole Optimization

Many simple optimizations can still be applied on assembly language

- "Program optimization" is grossly misnamed
 - Code produced by "optimizers" is not optimal in any reasonable sense
 - "Program improvement" is a more appropriate term