
Alex Aiken

Compilers

Liveness Analysis

Alex Aiken

Liveness Analysis

Once constants have been globally propagated, we would like to
eliminate dead code

After constant propagation, X := 3 is dead
(assuming X not used elsewhere)

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

Alex Aiken

Liveness Analysis

• The first value of x is dead
(never used)

• The second value of x is live
(may be used)

• Liveness is an important
concept

X := 3

X := 4

 Y := X

Alex Aiken

Liveness Analysis

A variable x is live at statement s if

– There exists a statement s’ that uses x

– There is a path from s to s’

– That path has no intervening assignment to x

Alex Aiken

Liveness Analysis

• A statement x := … is dead code if x is dead after the
assignment

• Dead statements can be deleted from the program

• But we need liveness information first . . .

Alex Aiken

Liveness Analysis

• We can express liveness in terms of information
transferred between adjacent statements, just as in
copy propagation

• Liveness is simpler than constant propagation, since
it is a boolean property (true or false)

Alex Aiken

Liveness Analysis

L(p, x, out) = { L(s, x, in) | s a successor of p }

p

Rule 1

Alex Aiken

Liveness Analysis

 L(s, x, in) = true if s refers to x on the rhs

…:= f(x)

Rule 2

Alex Aiken

Liveness Analysis

 L(x := e, x, in) = false if e does not refer to x

x := e

Rule 3

Alex Aiken

Liveness Analysis

 L(s, x, in) = L(s, x, out) if s does not refer to x

s

Rule 4

Alex Aiken

Liveness Analysis

1. Let all L(…) = false initially

2. Repeat until all statements s satisfy rules 1-4

Pick s where one of 1-4 does not hold and update
using the appropriate rule

Alex Aiken

Liveness Analysis

Alex Aiken

Liveness Analysis

• A value can change from false to true, but not the
other way around

• Each value can change only once, so termination is
guaranteed

• Once the analysis is computed, it is simple to
eliminate dead code

Template
vertLeft1

Liveness Analysis After running the liveness analysis algorithm to
completion, which of W, X, Y, and Z are live at the
program point labeled at right? Assume all variables
are dead on exit.

X > 0

Z := 5

X > 10

Z := W + 4

Y := Y + 1

W

? X := Z - 1

X

Y

Z

Alex Aiken

Liveness Analysis

We’ve seen two kinds of analysis:

Constant propagation is a forwards analysis:
information is pushed from inputs to outputs

Liveness is a backwards analysis: information is pushed
from outputs back towards inputs

Alex Aiken

Liveness Analysis

• There are many other global flow analyses

• Most can be classified as either forward or backward

• Most also follow the methodology of local rules
relating information between adjacent program
points

