

Compilers

Graph Coloring

Graph Coloring

- A coloring of a graph is an assignment of colors to nodes, such that nodes connected by an edge have different colors
- A graph is k -colorable if it has a coloring with k colors

Graph Coloring

- In our problem, colors = registers
- We need to assign colors (registers) to graph nodes (temporaries)
- Let $\mathrm{k}=$ number of machine registers
- If the RIG is k-colorable then there is a register assignment that uses no more than k registers

Graph Coloring

- Consider the example RIG

- There is no coloring with less than 4 colors
- There are 4-colorings of this graph

Graph Coloring

Graph Coloring

Which of the following colorings is a valid Graph Coloring minimal coloring of the given RIG?

Graph Coloring

- How do we compute graph colorings?
- It isn't easy:

1. This problem is very hard (NP-hard). No efficient algorithms are known.

- Solution: use heuristics

2. A coloring might not exist for a given number of registers

- Solution: later

Graph Coloring

- Observation:
- Pick a node t with fewer than k neighbors in RIG
- Eliminate t and its edges from RIG
- If resulting graph is k-colorable, then so is the original graph
- Why?
- Let $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}$ be the colors assigned to the neighbors of t in the reduced graph
- Since $\mathrm{n}<\mathrm{k}$ we can pick some color for t that is different from those of its neighbors

Graph Coloring

- The following works well in practice:
- Pick a node t with fewer than k neighbors
- Put t on a stack and remove it from the RIG
- Repeat until the graph is empty
- Assign colors to nodes on the stack
- Start with the last node added
- At each step pick a color different from those assigned to already colored neighbors

Graph Coloring

- Start with the RIG and with $\mathrm{k}=4$:
- Remove a

Stack: \{\}

Graph Coloring

- Remove d

Stack: \{a\}

Graph Coloring

- Note: all nodes now have fewer than 4 neighbors

Stack: $\{d, a\}$

- Remove c

Graph Coloring

Stack: $\{c, d, a\}$

- Remove b

Graph Coloring

Stack: $\{b, c, d, a\}$

- Remove e

Graph Coloring

Stack: $\{e, b, c, d, a\}$

- Remove f

Graph Coloring

Stack: $\{f, e, b, c, d, a\}$

- Empty graph - done with the first part!

Graph Coloring

- Now start assigning colors to nodes, starting with the top of the stack

Stack: $\{f, e, b, c, d, a\}$

Graph Coloring

$r_{1} f$

Stack: $\{e, b, c, d, a\}$

Graph Coloring

Stack: $\{b, c, d, a\}$

- e must be in a different register from f

Graph Coloring

Stack: $\{c, d, a\}$

Graph Coloring

Stack: $\{d, a\}$

Graph Coloring

b r_{3}
Stack: \{a\}

- d can be in the same register as b

Graph Coloring

Stack: \{\}

For the given RIG and $k=3$, which of the Graph Coloring following are valid deletion orders for the nodes of the RIG?
$\bigcirc \quad\{d, e, c, b, a, f\}$
$\bigcirc\{e, f, a, b, c, d\}$
$\bigcirc\{d, c, b, a, f, e\}$
$\bigcirc\{d, e, b, c, a, f\}$

