
Alex Aiken

Compilers

Spilling

Alex Aiken

Spilling

• What happens if the graph coloring heuristic fails to
find a coloring?

• In this case, we can’t hold all values in registers.

– Some values are spilled to memory

Alex Aiken

Spilling

• What if all nodes have k or more neighbors?

• Example: Try to find a 3-coloring of the RIG:
a

f

e

d

c

b

Alex Aiken

Spilling

• Remove a and get stuck

f

e

d

c

b

Alex Aiken

Spilling

• Pick a node as a candidate for spilling

– A spilled value “lives” in memory

– Assume f is chosen

 f

e

d

c

b

Alex Aiken

Spilling

• Remove f and continue the simplification

– Simplification now succeeds: b, d, e, c

e

d

c

b

Alex Aiken

Spilling

• Eventually we must assign a color to f

• We hope that among the 4 neighbors of f we use less
than 3 colors  optimistic coloring

f

e

d

c

b r3

r1 r2

r3

?

Alex Aiken

Spilling

• If optimistic coloring fails, we spill f
– Allocate a memory location for f

• Typically in the current stack frame
• Call this address fa

• Before each operation that reads f, insert
 f := load fa

• After each operation that writes f, insert
 store f, fa

Alex Aiken

Spilling

a := b + c

d := -a

e := d + f

f := 2 * e
b := d + e

e := e - 1

b := f + c

Original code

Alex Aiken

Spilling
a := b + c

d := -a
f1 := load fa

e := d + f1

f2 := 2 * e

store f2, fa

b := d + e

e := e - 1

f3 := load fa

b := f3 + c

The code after spilling f

Alex Aiken

Spilling
a := b + c

d := -a
f1 := load fa

e := d + f1

f2 := 2 * e

store f2, fa

b := d + e

e := e - 1

f3 := load fa

b := f3 + c

Recompute liveness

{b}

{c,e}

{b} {c,f}

{b,c,e,f}

{c,d,e,f}

{b,c,f}

{c,d,f}

{a,c,f}

{b,c,f}

{c,f}

{c,d,f1}

{c,f2}

{c,f3}

Alex Aiken

Spilling

• New liveness information is almost as before
– Note f has been split into three temporaries

• fi is live only

– Between a fi := load fa and the next instruction
– Between a store fi, fa and the preceding instr.

• Spilling reduces the live range of f

– And thus reduces its interferences
– Which results in fewer RIG neighbors

Alex Aiken

Spilling

• Some edges of the spilled node are removed

• In our case f still interferes only with c and d

• And the new RIG is 3-colorable
a

f1

e

d

c

b
f3

f2

Alex Aiken

Spilling

• Additional spills might be required before a coloring is found

• The tricky part is deciding what to spill

– But any choice is correct

• Possible heuristics:

– Spill temporaries with most conflicts

– Spill temporaries with few definitions and uses

– Avoid spilling in inner loops

Template
vertLeft2

Spilling For the given code fragment and RIG, find the
minimum cost spill. In this example, the cost of
spilling a node is given by:

A := 1

B := A * 2

C := C - B

A := B + 1

A < 16

D := C + 1

A

D C

B

of occurrences (use or definition)
 – # of conflicts
 + 5 if the node corresponds to a
 variable used in a loop

A

B

C

D

Alex Aiken

Spilling

• Register allocation is a “must have” in compilers:

– Because intermediate code uses too many
temporaries

– Because it makes a big difference in performance

• Register allocation is more complicated for CISC
machines

