
Alex Aiken

Compilers

Automatic Memory
Management

Alex Aiken

Managing Memory

• Storage management is still a hard problem in modern
programming

• C and C++ programs have many storage bugs
– forgetting to free unused memory
– dereferencing a dangling pointer
– overwriting parts of a data structure by accident
– and so on...

• Storage bugs are hard to find
– a bug can lead to a visible effect far away in time and program text

from the source

Alex Aiken

Managing Memory

• This is an old problem:

– studied since the 1950s for LISP

• There are well-known techniques for completely
automatic memory management

• Became mainstream with the popularity of Java

Alex Aiken

Managing Memory

• When an object is created, unused space is
automatically allocated

– In Cool, new objects are created by new X

• After a while there is no more unused space

• Some space is occupied by objects that will never be
used again

– This space can be freed to be reused later

Alex Aiken

Managing Memory

• How do we know an object will “never be used
again”?

• Observation: a program can use only the objects that
it can find:

 let x : A  new A in { x  y; ... }

Alex Aiken

Managing Memory

• An object x is reachable if and only if:
– a register contains a pointer to x, or
– another reachable object y contains a pointer to x

• You can find all reachable objects by starting from

registers and following all the pointers

• An unreachable object can never be used
– such objects are garbage

Alex Aiken

Managing Memory

• Consider the program:
 x  new A;
 y  new B
 x  y;
 if alwaysTrue() then x  new A else x.foo() fi

• After x  y (assuming y becomes dead there)
– the first object A is unreachable
– the object B is reachable (through x)
– thus B is not garbage and is not collected

• but object B is never going to be used

Alex Aiken

Managing Memory

• Coolc uses an accumulator
– it points to an object

– and this object may point to other objects, etc.

• And a stack pointer

– each stack frame contains pointers

• e.g., method parameters

– each stack frame also contains non-pointers

• e.g., return address

– if we know the layout of the frame we can find the pointers in it

Alex Aiken

Managing Memory

• In coolc we start tracing from acc and stack

– These are the roots

• Note B and D are unreachable from acc and stack

– Thus we can reuse their storage

A B C

Frame 1 Frame 2

D E acc

SP

Alex Aiken

Managing Memory

• Every garbage collection scheme has the following steps

1. Allocate space as needed for new objects

2. When space runs out:
a) Compute what objects might be used again (generally by

tracing objects reachable from a set of “root” registers)

b) Free the space used by objects not found in (a)

• Some strategies perform garbage collection before the
space actually runs out

