Compilers

Mark and Sweep

Alex Aiken

Mark and Sweep

* When memory runs out, GC executes two phases

— the mark phase: traces reachable objects
— the sweep phase: collects garbage objects

* Every object has an extra bit: the mark bit

— reserved for memory management
— initially the mark bit is O
— set to 1 for the reachable objects in the mark phase

Alex Aiken

Mark and Sweep

// mark phase

let todo = { all roots }
while todo # @ do
pick v € todo
todo < todo -{v}
if mark(v) =0then //visunmarked yet
mark(v) < 1
letv,,...,v,, be the pointers contained in v
todo < todo U {v,,...,v, }
fi
od

Alex Aiken

Mark and Sweep

The sweep phase scans the heap looking for objects with
mark bit 0

— these objects were not visited in the mark phase

— they are garbage

Any such object is added to the free list

Objects with a mark bit 1 have their mark bit resetto O

Alex Aiken

Mark and Sweep

// sweep phase
// sizeof(p) is the size of block starting at p

p < bottom of heap
while p < top of heap do
if mark(p) =1 then
mark(p) < O
else
add block p...(p+sizeof(p)-1) to freelist
fi
p < p + sizeof(p)
od

Alex Aiken

root

After mark:

root

After sweep:

root

Mark and Sweep

e
—0 A OB |0C |obD [0OE |0 F
N— A T
free
N
1 A OB |1 ¢ oD [tE |0 F
N— = A T
free
N
OA OB |oC (oD |[|0E

S —

Alex Aiken

root -

N Mark and Sweep

G H
)4/ " free Choose the correct final

heap after mark and sweep
garbage collection.

N
B C

N
b | E

root—"_A F G H
<:) \~==f:::—” ‘_:><:f:________,,fﬁ_’llﬁ_iree
 ——
C)r‘oo‘l'-—‘> A B C E D F G H
W/ free
/‘V—\
Owot—!] a]l 8] c[o[e] e[H
{ S.Z free
N\ P —
O root—" A B C

¢
E

free

Mark and Sweep

* While conceptually simple, this algorithm has a number
of tricky details

— typical of GC algorithms

* A serious problem with the mark phase
— it is invoked when we are out of space
— yet it needs space to construct the todo list

— the size of the todo list is unbounded so we cannot
reserve space for it a priori

Alex Aiken

Mark and Sweep

 The todo list is used as an auxiliary data structure to
perform the reachability analysis

 Thereis a trick that allows the auxiliary data to be stored
in the objects themselves

— pointer reversal: when a pointer is followed it is
reversed to point to its parent

e Similarly, the free list is stored in the free objects
themselves

Alex Aiken

Mark and Sweep

Alex Aiken

Mark and Sweep

e Space for a new object is allocated from the new list
— a block large enough is picked
— an area of the necessary size is allocated from it
— the left-over is put back in the free list

 Mark and sweep can fragment the memory

 Advantage: objects are not moved during GC
— no need to update the pointers to objects
— works for languages like C and C++

Alex Aiken

