
Alex Aiken

Compilers

Mark and Sweep

Alex Aiken

Mark and Sweep

• When memory runs out, GC executes two phases

– the mark phase: traces reachable objects

– the sweep phase: collects garbage objects

• Every object has an extra bit: the mark bit

– reserved for memory management

– initially the mark bit is 0

– set to 1 for the reachable objects in the mark phase

Alex Aiken

Mark and Sweep

// mark phase

let todo = { all roots }
while todo do
 pick v todo
 todo todo - { v }
 if mark(v) = 0 then // v is unmarked yet
 mark(v) 1
 let v1,...,vn be the pointers contained in v
 todo todo {v1,...,vn}
 fi
od

Alex Aiken

Mark and Sweep

• The sweep phase scans the heap looking for objects with
mark bit 0

– these objects were not visited in the mark phase

– they are garbage

• Any such object is added to the free list

• Objects with a mark bit 1 have their mark bit reset to 0

Alex Aiken

Mark and Sweep

// sweep phase
// sizeof(p) is the size of block starting at p

p bottom of heap
while p < top of heap do
 if mark(p) = 1 then
 mark(p) 0
 else
 add block p...(p+sizeof(p)-1) to freelist
 fi
 p p + sizeof(p)
od

Alex Aiken

Mark and Sweep

free

0 0 0 0 0 0

After sweep:

root A B C D E F

free

1 0 1 0 1 0 root A B C D E F

After mark:

free

0 0 0 0 0 0 root A B C D E F

Template
vertLeft1

Mark and Sweep

free

root A B C D E F G H

free
root A B C D E F G H

free
root A B C E D F G H

free
root A B C D E F G H

free
root A B C D E F G H

Choose the correct final
heap after mark and sweep
garbage collection.

Alex Aiken

Mark and Sweep

• While conceptually simple, this algorithm has a number
of tricky details

– typical of GC algorithms

• A serious problem with the mark phase

– it is invoked when we are out of space

– yet it needs space to construct the todo list

– the size of the todo list is unbounded so we cannot
reserve space for it a priori

Alex Aiken

Mark and Sweep

• The todo list is used as an auxiliary data structure to
perform the reachability analysis

• There is a trick that allows the auxiliary data to be stored
in the objects themselves
– pointer reversal: when a pointer is followed it is

reversed to point to its parent

• Similarly, the free list is stored in the free objects
themselves

Alex Aiken

Mark and Sweep

Alex Aiken

Mark and Sweep

• Space for a new object is allocated from the new list
– a block large enough is picked

– an area of the necessary size is allocated from it

– the left-over is put back in the free list

• Mark and sweep can fragment the memory

• Advantage: objects are not moved during GC
– no need to update the pointers to objects

– works for languages like C and C++

