
Alex Aiken

Compilers

Reference Counting

Alex Aiken

Reference Counting

• Rather that wait for memory to be exhausted, try to
collect an object when there are no more pointers to it

• Store in each object the number of pointers to that
object

– this is the reference count

• Each assignment operation manipulates the reference
count

Alex Aiken

Reference Counting

• new returns an object with reference count 1
• Let rc(x) be the reference count of x

• Assume x, y point to objects o, p

• Every assignment x  y becomes:

 rc(p)  rc(p) + 1
 rc(o)  rc(o) - 1
 if(rc(o) == 0) then free o
 x  y

Alex Aiken

Reference Counting

• Advantages:

– easy to implement

– collects garbage incrementally without large pauses in
the execution

• Disadvantages:

– cannot collect circular structures

– manipulating reference counts at each assignment is
very slow

Template
vertLeft1

Reference Counting

Choose the final heap after
executing the following
two assignments and
updating reference counts:
 C.ptrToB = D
 A.ptrToB = NULL

free root A B C D E F

free root A B C D E F

free root A D E F

free root A E

free root A C D E F

free free

free free free free

free

Alex Aiken

Reference Counting

• Automatic memory management prevents serious
storage bugs

• But reduces programmer control
– e.g., layout of data in memory
– e.g., when is memory deallocated

• Pauses problematic in real-time applications
• Memory leaks possible (even likely)

Alex Aiken

Reference Counting

• Garbage collection is very important

• There are more advanced garbage collection algorithms:

– concurrent: allow the program to run while the
collection is happening

– generational: do not scan long-lived objects at every
collection

– real time: bound the length of pauses

– parallel: several collectors working at once

