
Alex Aiken 

Compilers 

Java Threads 



Alex Aiken 

Java Threads 

• Java has concurrency built in through threads 
– Each thread has its own program counter & stack 

 
• Thread objects have class Thread 

– Start and stop methods 
 

• Synchronization obtains a lock on the object: 
synchronized (x) { e } 

• In synchronized methods, this is locked 



Alex Aiken 

Java Threads 

class Simple {  

 int a = 1, b = 2;  

 void to() { a = 3; b = 4; }  

 void fro() {println("a= " + a + ", b=" + b); }  

}  

 

Two threads call to() and fro().  What is printed? 



Alex Aiken 

Java Threads 

class Simple {  

 int a = 1, b = 2;  

 void synchronized to() { a = 3; b = 4; }  

 void fro() {println("a= " + a + ", b=" + b); }  

}  

 

Two threads call to() and fro().  What is printed? 



Alex Aiken 

Java Threads 

class Simple {  

 int a = 1, b = 2;  

 void synchronized to() { a = 3; b = 4; }  

 void synchronized fro() {println("a= " + a + ", b=" + b); }  

}  

 

Two threads call to() and fro().  What is printed? 

 



Alex Aiken 

Java Threads 

• Even without synchronization, a variable should only 
hold values written by some thread 

– Writes of values are atomic 

– Violated for doubles, though 

 

• Java concurrency semantics are difficult to 
understand in detail, particularly as to how they 
might be implemented on certain machines 


