Relational Design Theory

Boyce-Codd Normal Form

Relational design by decomposition

- "Mega" relations + properties of the data
- System decomposes based on properties
- Final set of relations satisfies normal form
- No anomalies, no lost information
- Functional dependencies \Rightarrow Boyce-Codd Normal Form
- Multivalued dependences \Rightarrow Fourth Normal Form

Decomposition of a relational schema

$$
\begin{aligned}
& R\left(A_{1}, \ldots, A_{n}\right) \bar{A} \\
& R_{1}\left(B_{1}, \ldots, B_{k}\right) \bar{B} \quad \bar{B} \cup \bar{C}=\bar{A} \backsim \\
& R_{2}\left(C_{1}, \ldots, C_{m}\right) \bar{C} \quad R_{1} \bowtie R_{2}=R . \\
R_{1}= & \pi_{\bar{B}}(R) \\
R_{2}= & \pi_{\bar{C}}(R)
\end{aligned}
$$

Decomposition Example \#1
Student(SSN, sName, address, HScode, HSname, HScity, GPA, priority)
S1 (SSN, sName, addr, HScode, GPA, priority)
S2 (Hscode, Hsname, Hscity)

$$
\bar{A} \cup \bar{B}=\bar{C} \quad \text { sim } 2=\text { student }
$$

Decomposition Example \#2
Student(SSN, sName, address, HScode, HSname, HScity, GPA, priority)
SI (SSN, sName, addr, Hhcode, Haname, Hscity)
S_{2} (sName, Hsname, GPA, priority)

$$
\bar{A} \cup \bar{B}=\bar{C}
$$

SIMS2 ? student

Relational design by decomposition

- "Mega" relations + properties of the data
- System decomposes based on properties
"Good" decompositions only \leftarrow "reassembly" . Into "good" relations produces orig. Lossless join property

Boyce-Codd Normal Form

Relation R with EDs is in BCNF if:
For each $\bar{A} \rightarrow B$, $\bar{A}($ is a key

$\bar{A} \rightarrow B$ c key
$\bar{A} \subset D$
"contains a key" "is a superkey"

BCNF? Example \#1
Student(SSN, sName, address, HScode, HSname, HScity, GPA, priority)
${ }^{`}$ SSN \rightarrow sName, address, GPA Keys:
GPA \rightarrow priority $\left\{\begin{array}{l}\text { SSN, Hscole }\}\end{array}\right.$
HScode \rightarrow HSname, HScity
Eve FD have a key on LHS?
No! No

BCNF? Example \#2
Apply(SSN, cName, state, date, major)
SSN, cName, state \rightarrow date, major
key
In BCNF.

Relational design by decomposition

- "Mega" relations + properties of the data
- System decomposes based on properties
* "Good" decompositions only - algorithm.
* Into "good" relations

BCNF decomposition algorithm

Input: relation R + FDs for R
Output: decomposition of R into BCNF relations with "lossless join"
Compute keys for R using FDs Repeat until all relations are in BCNF: \longleftarrow Pick any R^{\prime} with $\bar{A} \rightarrow \bar{B}$ that violates $B C N F$ Decompose R^{\prime} into $R_{1}(A, B)$ and $\frac{R_{2}(A, r e s t)}{C}$ Compute FDs for R_{1} and $R_{2} \leftarrow$ Compute keys for R_{1} and $\mathrm{R}_{2} \leftarrow$

BCNF Decomposition Example
Student(SSN, sName, address, HScode, HSname, HScity, GPA, priority)
SSN \rightarrow sName, address, GPA GPA \rightarrow priority
HScode \rightarrow HSname, HScity Key: \{ssN, HScode\}
SI (Hscode, HSname, H3city) \qquad

$$
\begin{aligned}
& 53 \text { (GpA, priorify) } \\
& \text { S4 (SSN, SName, addr, H3cone, GPA) } \\
& \rightarrow \text { SS SSN, SName, addr, GPA) } \\
& \text { S6 (SSN, HScode) }-3
\end{aligned}
$$

BCNF decomposition algorithm

Input: relation R + FDs for R
Output: decomposition of R into BCNF relations with "lossless join"
Compute keys for R Repeat until all relations are in BCNF:
Pick any R^{\prime} with $A \rightarrow B$ that violates $B C N F$
Decompose R^{\prime} into $R_{1}(A, B)$ and $R_{2}(A$, rest)
Compute FDs for R_{1} and R_{2} Implied $E D_{s}$ Closure.
Compute keys for R_{1} and R_{2}

Does BCNF guarantee a good decomposition?

- Removes anomalies?
- Can logically reconstruct original relation?

Too few or too many tuples?

$$
\begin{gathered}
R_{\pi} R_{1} R_{2} \\
=\begin{array}{l}
123 \\
125 \\
423 \\
425
\end{array} \\
\left.R_{1} A R_{2}=\begin{array}{l}
425
\end{array}\right)
\end{gathered}
$$

$$
\longrightarrow R r \left\lvert\, \begin{array}{|l|l|}
\hline A & B \\
\hline 1 & 2 \\
\hline 4 & 2 \\
\hline
\end{array}\right.
$$

Does BCNF guarantee a good decomposition?

- Removes anomalies?
- Can logically reconstruct original relation? Too few or too many tuples?
- Some shortcomings discussed in later video

