

Relational Design Theory

Boyce-Codd Normal Form

Relational design by decomposition

- "Mega" relations + properties of the data
- System decomposes based on properties
- Final set of relations satisfies normal form
 - No anomalies, no lost information
- Functional dependencies \Rightarrow <u>Boyce-Codd Normal</u> Form
 - Multivalued dependences ⇒ Fourth Normal Form

BCNF

Decomposition of a relational schema

$$R(A_{i_1}, \dots, A_n) \overline{A}$$

$$(S R_1(B_{i_1}, \dots, B_k) \overline{B} \quad \overline{B} \cup \overline{C} = \overline{A} \vee$$

$$R_2(C_{i_1}, \dots, C_m) \overline{C} \quad R_1 \bowtie R_2 = R \vee$$

$$R_1 = TT_{\overline{B}}(R) \quad \overline{A} \quad \overline{C} \quad \overline{C} \quad \overline{C}$$

$$R_2 = TT_{\overline{C}}(R) \quad \overline{C} \quad \overline{C} \quad \overline{C}$$

Jennifer Widom

Decomposition Example #1

Student(SSN, sName, address, HScode, HSname, HScity, GPA, priority)

Decomposition Example #2

Student(SSN, sName, address, HScode, HSname, HScity, GPA, priority)

BCNF

Relational design by decomposition

- "Mega" relations + properties of the data
- System decomposes based on properties
- Good" decompositions only ~ "reassembly"
 Into "good" relations
 BCNF
 Cossless join property

Boyce-Codd Normal Form

BCNF? Example #1

Student(SSN, sName, address, HScode, HSname, HScity, GPA, priority)

 $SSN \rightarrow SName, address, GPA \rightarrow SName, address, GPA \rightarrow Priority$ $<math>GPA \rightarrow Priority$ $SSN \rightarrow SName, HScity$

BCNF? Example #2

Apply(SSN, cName, state, date, major)

 $\frac{\text{SSN, CName, state} \rightarrow \text{date, major}}{\text{Key}}$ In BCNF.

Relational design by decomposition

- "Mega" relations + properties of the data
- System decomposes based on properties
- Good decompositions only algorithm.
- Into "good" relations _______

BCNF decomposition algorithm

Input: relation R + FDs for R Output: decomposition of R into BCNF relations with "lossless join"

Compute keys for R using FDs Repeat until all relations are in BCNF: \checkmark Pick any R' with $\overrightarrow{A} \rightarrow \overrightarrow{B}$ that violates BCNF Decompose R' into $R_1(A, B)$ and $R_2(A, rest)$ Compute FDs for R_1 and $R_2 \leftarrow$ Compute keys for R_1 and $R_2 \leftarrow$

BCNF Decomposition Example

Student(SSN, sName, address, HScode, HSname, HScity, GPA, priority)

 \checkmark SSN \rightarrow sName, address, GPA \checkmark GPA \rightarrow priority HScode → HSname, HScity Key: {ssN, HScode} (SIX Hside, Hsname, Hscity) - (:) ~52 (SSN, SName, adde, Hscode, GPA, priority) S3)(GPA, priority) ← ⁽¹⁾ Sy (SSN, SName, addr, Haude, GPA) (S6) (SSN, SName, addr, GPA) (5)

BCNF decomposition algorithm

Input: relation R + FDs for R Output: decomposition of R into BCNF relations with "lossless join"

differentwer "Extend" Compute keys for R $A \rightarrow B$ $|A \rightarrow BA^{\dagger}$ Repeat until all relations are in BCNF: Pick any R' with $A \rightarrow B$ that violates BCNF Decompose R' into $R_1(A, B)$ and $R_2(A, rest)$ Compute FDs for R_1 and R_2 Implied FDs Closure. Compute keys for R_1 and R_2

Does BCNF guarantee a good decomposition?

- Removes anomalies?
- Can logically reconstruct original relation?

Does BCNF guarantee a good decomposition?

- Removes anomalies?
- Can logically reconstruct original relation?

Too few or too many tuples?

Some shortcomings discussed in later video