

Relational Design Theory

Functional Dependencies

Relational design by decomposition

- "Mega" relations + properties of the data
- System decomposes based on properties
- Final set of relations satisfies normal form
 - No anomalies, no lost information
- Functional dependencies ⇒ Boyce-Codd Normal Form
- Multivalued dependences ⇒ Fourth Normal Form

Functional dependencies are generally useful concept

- Data storage compression
- Reasoning about queries optimization

Example: College application info.

```
Student(SSN, sName, address,
HScode, HSname, HScity, GPA, priority)
Apply(SSN, cName, state, date, major)
```

Student(SSN, sName, address, HScode, HSname, HScity, GPA, priority)

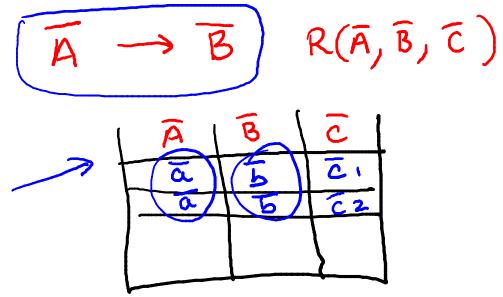
Suppose priority is determined by GPA

Two tuples with same priority have same GPA

Student(SSN, sName, address, HScode, HSname, HScity, GPA, priority)

Two tuples with same priority have same GPA

- Based on knowledge of real world
- All instances of relation must adhere



Student(SSN, sName, address, HScode, HSname, HScity, GPA, priority)

Apply(SSN, cName, state, date, major)

CName -> date

SSN, cName -> major

SSN -> state

Functional Dependencies and Keys

- Relation with no duplicates
- R(A,B)
- Suppose $\bar{A} \rightarrow all$ attributes



Trivial Functional Dependency

Nontrivial FD

$$\overline{A} \rightarrow \overline{B} \quad \overline{B} \not = \overline{A}$$

Completely nontrivial FD

A	B	
4	4	
no	~~	
•		
•	:	

> Hscode

Rules for Functional Dependencies

Splitting rule

$$\rightarrow \overline{A} \rightarrow B_{1}, B_{2}, ..., B_{m} \leftarrow$$

 $\Rightarrow \overline{A} \rightarrow B_{1} \overline{A} \rightarrow B_{2}$

Can we also split left-hand-side?

A,
$$A_2$$
, ..., $A_n \rightarrow \overline{B}$ H Sname
? $A_1 \rightarrow \overline{B}$ $A_2 \rightarrow \overline{B}$ X

No HSnawer HScity > HSvode

Rules for Functional Dependencies

Combining rule

$$\begin{array}{ccc}
\widehat{A} & \rightarrow B_1 \\
\widehat{A} & \rightarrow B_2 \\
\vdots \\
\widehat{A} & \rightarrow B_n
\end{array}$$

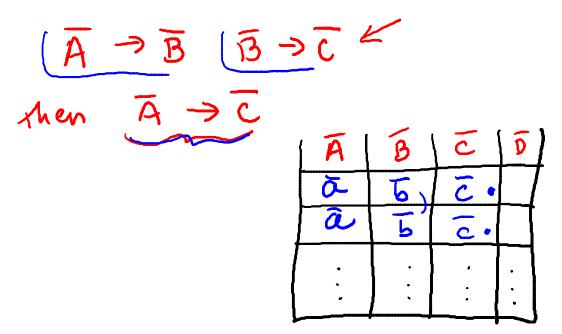
$$\Rightarrow \widehat{A} \rightarrow B_1, ..., B_n$$

Rules for Functional Dependencies

Trivial-dependency rules

Rules for Functional Dependencies

Transitive rule



Closure of Attributes

- Given relation, FDs, set of attributes Ā
- \bullet Find all B such that $\bar{A} \to B$ A+ {A1,...,An3* A4, 56 Start with EAI, ..., An, C, D, E 3 repeat until no change: If A → B and A in set all B to set

Closure Example

Student(SSN, sName, address, HScode, HSname, HScity, GPA, priority)

```
\checkmarkSSN \rightarrow SName, address, GPA
\checkmarkGPA \rightarrow priority
            ESSN, House 3+ markers.
 HScode \rightarrow HSname, HScity
             ESSN, HSLode, sName, address,
GPA, priority, HSname, HScity 3
```

Closure and Keys

How can we find all keys given a set of FDs?

Specifying FDs for a relation

- \bullet S_1 and S_2 sets of FDs
- S₂ "follows from" S₁ if every relation instance satisfying S₁ also satisfies S₂

```
Sz: 2 SSN >> privrity3
How to test? SSN > GPA GPA > priority }
  Does \overline{A} \rightarrow \overline{B} follow from S? 5^{\circ}
 (1) A+ based on & check if B in set.
 (2) Armstrong's Axioms
```

Specifying FDs for a relation

Want: Minimal set of completely nontrivial FDs such that all FDs that hold on the relation follow from the dependencies in this set

Functional dependencies are generally useful concept

- Relational design by decomposition
 - Functional dependencies ⇒ Boyce-Codd Normal Form
- Data storage compression
- Reasoning about queries optimization