

Relational Design Theory

Multivalued Dependencies & 4th Normal Form

Relational design by decomposition

- "Mega" relations + properties of the data
- System decomposes based on properties
- Final set of relations satisfies normal form

- No anomalies, no lost information Functional dependencies \Rightarrow Boyce-Codd Normal Form Multivalued dependences \Rightarrow Fourth Normal Form

Example: College application info.

Apply(SSN, cName, hobby)

FDs? No.

Keys? All attrs.

BCNF? Jes.

Good design? No.

5 colleges, 6 hobbies -> 30 tuples.

Multivalued Dependency

- Based on knowledge of real world
- All instances of relation must adhere

$$\forall t, u \in R$$
: $t[\bar{A}] = u[\bar{A}]$ then
 $\exists v \in R$: $v[\bar{A}] = t[\bar{A}]$ and
 $v[\bar{B}] = t[\bar{B}]$ and
 $v[rest] = u[rest]$

tuple-generating dependencies

Apply(SSN, cName, hobby)

55N	cName	hobby
123	Stanford.	trumpet
123	Berkeley	tennis.
123	Stanford	tennis
123	Berkeley	trumpet
:	:	:

Modified example

Apply(SSN, cName, hobby) *
Reveal hobbies to colleges selectively *

MVDs? None

Good design? Yes.

Expanded example

Apply(SSN, cName, date, major, hobby)

Reveal hobbies to colleges selectively ✓ Apply once to each college one day May apply to multiple majors ✓

Trivial Multivalued Dependency

Ā

a

A - DB B G A or A V B = all uttributes Nontrivial MVD otherwise. No

B

b

Rules for Multivalued Dependencies

Jennifer Widom

Rules for Multivalued Dependencies

Intersection rule A >> B A >> E then A >> B n E **Transitive rule** A > B B > C then A > C-B MUDS -Rule Splitting.

Fourth Normal Form

Relation R with MVDs is in 4NF if: For each nontrivial $A \rightarrow B$, A is a key

Fourth Normal Form \implies BCNF

Relation R with MVDs is in 4NF if: For each nontrivial A \rightarrow B, A is a key

4NF decomposition algorithm

Input: relation R + FDs for R + MVDs for R Output: decomposition of R into 4NF relations with "lossless join"

- Compute keys for R 🗸
- Repeat until all relations are in 4NF: 🗹
 - Pick any R' with nontrivial $A \rightarrow B$ that violates 4NF
 - Decompose R' into $R_1(A, B)$ and $R_2(A, rest)$
 - Compute FDs and MVDs for R₁ and R₂
 - Compute keys for R_1 and R_2 \checkmark

BCNF Decomposition Example #1

Apply(SSN, cName, hobby)

Jennifer Widom

BCNF Decomposition Example #2

Apply(SSN, cName, date, major, hobby)

⊙ SSN, cName > date * No Keys-✓ 55N, cName, dale →> major × At (55N, CName, date, major) , cName, date, hobby → A3 (SSN, CName, date) A4 (SSN, CName, major) > A5 (SSN, CName, hobby)

Relational design

- Functional dependencies & Boyce-Codd Normal Form $R(A,B,C) \xrightarrow{A \rightarrow B}$
- Multivalued dependences & Fourth Normal Form
 - R(A, B, C, D) A BE

