

Relational Design Theory

Motivation & overview

Jennifer Widom

Designing a database schema

- Usually many designs possible
- Some are (much) better than others!
- How do we choose?

Often use higher-level design tools, but ...

- Some designers go straight to relations
- Useful to understand why tools produce certain schemas

Very nice theory for relational database design

Rel. design - overview

Example: College application info.

- SSN and name
- Colleges applying to
- High schools attended (with city)
- Hobbies

Apply(SSN, sName, cName, HS, HScity, hobby)

Apply(SSN, sName, cName, HS, HScity, hobby)

123 Ann from PAHS (P.A.) and GHS (P.A.) plays tennis and trumpet and applied to Stanford, Berkeley, and MIT

123 Ann Stanford PAtts P.A. tennis 123 Ann Berkeley PAHS P.A. tennis 123 Ann Berkeley PAHS P.A. trumpet 123 Ann Berkeley PAHS P.A. trumpet : CHS

Apply(SSN, sName, cName, HS, HScity, hobby)

123 Ann from PAHS (P.A.) and GHS (P.A.) plays tennis and trumpet and applied to Stanford, Berkeley, and MIT

Design "anomalies" Redundancy capture info. multiple times 123 Ann PAHS ternis MIT

Apply(SSN, sName, cName, HS, HScity, hobby)

123 Ann from PAHS (P.A.) and GHS (P.A.) plays tennis and trumpet and applied to Stanford, Berkeley, and MIT

Design "anomalies"

- Redundancy
- Update anomaly

update faits trukpet defending cornet

Apply(SSN, sName, cName, HS, HScity, hobby)

123 Ann from PAHS (P.A.) and GHS (P.A.) plays tennis and trumpet and applied to Stanford, Berkeley, and MIT

Design "anomalies"

- Redundancy
- Update anomaly
- Deletion anomaly

suchig

Example: College application info.

- SSN and name
- Colleges applying to
- High schools attended (with city)
- Hobbies

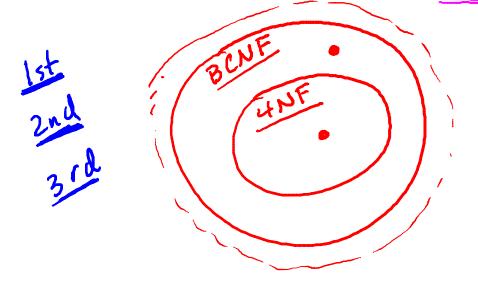
No anomalies Reconstruct orig. data

Rel. design - overview

Student(SSN, sName)
Apply(SSN, cName); hobby)
HighSchool(SSN, HS); Hsuify)
Located(HS, HScity)
Hobbies(SSN, hobby)

Design by decomposition

- Start with "mega" relations containing everything
- Decompose into smaller, better relations with same info.
- Can do <u>decomposition automatically</u>


Automatic decomposition

- "Mega" relations + properties of the data
- System <u>decomposes</u> based on properties
- Final set of relations satisfies normal form
 - No anomalies, no lost information

Properties and Normal Forms

Rel. design - overview

- \checkmark Functional dependencies \Rightarrow Boyce-Codd Normal Form
- \checkmark + Multivalued dependences \Rightarrow Fourth Normal Form

Functional Dependencies and BCNF

Apply(<u>SSN</u>, <u>sName</u>, <u>cName</u>) Redundancy; Update & Deletion Anomalies

- Storing SSN-sName pair once for each college

Functional Dependency $SSN \rightarrow SName$

- Same <u>SSN</u> always has same sName
- Should store each <u>SSN</u>'s sName only once

Boyce-Codd Normal Form If $A \rightarrow B$ then A is a key

Decompose: Student(SSN, sName) Apply(SSN, cName)

Multivalued Dependencies and 4NF

Apply(SSN, CName, HS)

- Redundancy; Update & Deletion Anomalies
- Multiplicative effect C colleges, H high schools tuples
- Not addressed by <u>BCNF</u>: No functional dependencies

Multivalued Dependency SSN ->> CName SSN ->> HS

- Given <u>SSN</u> has every combination of cName with HS <</p>
- Should store each <u>cName</u> and each <u>HS</u> for an <u>SSN</u> once

Fourth Normal Form $If A \rightarrow B$ then A is a key

Decompose: Apply(SSN, cName) HighSchool(SSN, HS)

Design by decomposition

- "Mega" relations + properties of the data
- System decomposes based on properties
- Final set of relations satisfies normal form
 - No anomalies, no lost information
- Functional dependencies Boyce-Codd Normal Form
- Multivalued dependences \Rightarrow Fourth Normal Form