Relational Databases

Relational Algebra (1) Select, project, join

Relational Algebra (1)

Query (expression) on set of relations produces relation as a result

Relational Algebra (1)

Examples: simple college admissions database
Co11ege (cName, state, enro11ment) \leftarrow Student(sID, sName, GPA, sizeHS) \leftarrow Apply(sID, cName,major, decision) \longleftarrow

Relational Algebra (1)

Simplest query: relation name
Use operators to filter, slice, combine
Student -

Select operator: picks certain rows
Students with GPA >3.7 $\sigma_{G P A}>3.7$ student
Students with GPA>3.7 and HS<1000

Applications to Stanford CS major $\sigma_{c \text { name }}=$ 'Stanford' \wedge major= 'cs' Apply
college
Student
App Ty

cName	state	enr

sID	cName	major	dec

Project operator: picks certain columns

ID and decision of all applications

Rel

To pick both rows and columns...

ID and name of students with GPA >3.7

$$
\begin{aligned}
& \Pi_{S 10, N \text { Nome }}\left(\sigma_{G P A \neg 3.7}\right. \text { Student) } \\
& \sigma_{\text {cold }}(\text { Exp }) \\
& \prod_{A_{1}, \ldots, A_{n}} \text { (Exp) }
\end{aligned}
$$

Student			
sID	sName	GPA	HS

Duplicates

Relational Algebra (1)

List of application majors and decisions

$$
\begin{aligned}
& \Pi_{\text {major, dec }} \text { Apply SOL: Maltisets, bags } \\
& \text { R.A.: Sets }
\end{aligned}
$$

Student			
sID	sName	GPA	HS

Cross-product: combine two relations
(a.k.a. Cartesian product)

Student x Apply

Cross-product: combine two relations

(a.k.a. Cartesian product)

Names and GPAs of students with HS >1000 who applied to CS and were rejected

student. SID $=$ Apply. SID
$\begin{aligned} & H S>1000 \wedge \text { major }={ }^{\prime} C s^{\prime}\end{aligned}$ (Student \times Apply) Λ dec $=$ ' R '

COllege		
cName	state	ens

Student

Natural Join

Relational Algebra (1)

- Enforce equality on all attributes with same name \longleftarrow
- Eliminate one copy of duplicate attributes \longleftarrow

Natural Join
Names and GPAs of students with HS>1000 who applied to CS at college with enr>20,000 and were rejected
TT sName, GPA

\wedge dec $=$ ' R ' \wedge eur $>20,000$

Natural Join

$$
\begin{aligned}
& E_{x p} \perp \bowtie E \times p_{2} \equiv \\
& \Pi_{\text {scheme }\left(E_{1}\right) \cup \text { schema }\left(E_{2}\right)}(\\
& \left.\sigma_{E_{1} A_{1}}=E_{2} \cdot A_{1} \wedge E_{1} \cdot A_{2}=E_{2} \cdot A_{2} \wedge \ldots\left(E_{x p_{1}} \times E_{\times p_{2}}\right)\right)
\end{aligned}
$$

Theta Join

$$
\text { Exp, } \Delta_{\theta}^{\swarrow} E_{x p_{2}} \equiv \sigma_{\theta}\left(E x p_{1} \times E \times p_{2}\right)
$$

- Basic operation implemented in DBMS
- Term "join" often means theta join

Relational Algebra (1)

Query (expression) on set of relations produces relation as a result

- Simplest query: relation name
- Use operators to filter, slice, combine
- Operators so far: select, project, cross-product, natural join, theta join

