Relational Databases

Relational Algebra (2) Set operators, renaming, notation

Relational Algebra (2)

Relational algebra query (expression) on set of relations produces relation as a result

College(cName, state, enrol1ment)
Student(sID, sName, GPA, sizeHS)
Apply(sID, cName, major, decision)

Union operator
List of college and student names

Difference operator
IDs and names of students who didn't apply anywhere

$$
\begin{aligned}
& \left(\left(\pi_{\text {sID }} \text { student }-\pi_{\text {sID Apply }}\right) \bowtie \text { student }\right) \\
& \uparrow \Pi_{\text {sName }}
\end{aligned}
$$

College
Student
Apply

cName	state	er

sID	cName	major	dec

Relational Algebra (2)

Intersection operator

Names that are both a college name and a student name

$$
\Pi_{\text {cName }} \text { college } \cap \Pi_{\text {SName }} \text { student }
$$

Relational Algebra (2)

Intersection doesn't add expressive power (1)

Relational Algebra (2)

Intersection doesn't add expressive power (2)

Student			
sID	sName	GPA	HS

Relational Algebra (2)

Rename operator

1. $P_{R\left(A_{1}, \ldots, A_{n}\right)}(E) \ll G_{C \text { neral }} \nRightarrow$
2. $P_{R}(E)$
3. $\left.P_{\frac{A_{1}, \ldots, A_{n}}{}}^{\tau}(E)\right\}$

COllege		
cName	state	ens

Student			
sID	sName	GPA	HS

Relational Algebra (2)

Rename operator

To unify schemas for set operators
List of college and student names

$$
\begin{aligned}
& P_{C \text { (name })}\left(\Pi_{C \text { Name }} C \text { College }\right) U \\
& P_{c \text { (name })}\left(\Pi_{\text {shame }} \text { Student }\right)
\end{aligned}
$$

Student			
sID	sName	GPA	HS

Rename operator
For disambiguation in "self-joins"
Pairs of colleges in same state

$$
\begin{aligned}
\sigma_{n \mid<n 2}(& P_{c 1(n 1, s, e 1)}(\text { College }) \bowtie \\
& \left.P_{c 22(n 2, s, e 2)}(\text { college })\right)
\end{aligned}
$$

Berkeley stanford

Alternate notation (1)

Assignment statements - Pairs of colleges in same state

$$
\begin{aligned}
& C 1:=P_{c 11}, \text { el College } \\
& C 2:=P_{c 2}, s, e 2 \text { college } \\
& C P:=C 1 \infty c 2 \\
& \text { Ans }:=\sigma_{n 1<n 2} C P
\end{aligned}
$$

Alternate notation (2)
Expression tree - GPAs of students applying to CS in CA

Relational Algebra summary

$$
\begin{aligned}
& \text { Core } \\
& R \\
& \sigma_{c}(E) \\
& \Pi_{A_{1}, \ldots, A_{n}}(E) \quad\left\{\begin{array}{l}
E_{1} \infty E_{2} \\
E_{1} \infty \Phi_{\theta} \\
E_{1} \cap E_{2}
\end{array}\right. \\
& \begin{array}{l}
\left.E_{1}\right) \times\left(E_{2}\right) \\
E_{1} \cup E_{2} \\
E_{1}-E_{2} \\
P_{R\left(A_{1}, \ldots, A_{n}\right)}(E)
\end{array}
\end{aligned}
$$

